Osteoarthritis (OA) is the most commonly observed arthritic disease causing severe pain and impairing patient's quality of life. This study aimed to investigate and compare the effect of Elaeagnus angustifolia extract and quercetin on the mouse model of knee osteoarthritis (OA). Sixty Balb-C mice were used to establish the monosodium iodoacetate (MIA) model of OA. Then, they were randomized into untreated OA group (normal nutrition), E. angustifolia extract-treated group (32 mg/kg by gavage), quercetin-treated group (20 mg/kg by gavage) and ibuprofen- treated group (20 mg/kg). Fifteen mice with no MIA treatment were considered as the normal controls. The mice were treated for 28 days. The histopathological analysis was performed on knee joints. Expression levels of matrix metalloproteinase 3 and 13 (MMP-1 and MMP-13) in serum were assessed in addition. Histopathological study indicated that in the quercetin-treated group, the thickness of femur and tibia were significantly increased (P < 0.05). Among groups treated by E. angustifolia extract, quercetin and ibuprofen, the concentration of MMP-3 was 5.47 ± 1.75 ng/ml, 4.38 ± 1.78 ng/ml and 4.86 ± 1.40 ng/ml, respectively. The level of MMP-13 in sera was 3.32 ± 1.64 ng/ml, 2.67 ± 1.73 ng/ml and 5.31 ± 1.68 ng/ml in the same order (P < 0.05). The results of this study suggest that the quercetin was useful in the reduction of symptoms of OA and raised the improvement of damaged cartilage. Hence, it can be a beneficial medical supplement in OA treatment. Besides, E. angustifolia extract and quercetin significantly reduced the serum MMP-3 and MMP-13 concentrations. It could be one of the mechanisms through that E. angustifolia plays a role in remission of OA.
The importance of ionic channels is due to the passage of ions across the cell membrane which is based on electrochemical gradients. The structure of ionic channels often includes one or several central cores which makes up the pore. The direct electron transfer between the enzyme and unmodifi ed electrode is usually prohibited due to shielding of the redox active sites by the protein shells. Monte Carlo simulation have been used to investigate protein folding pathways with some success. Monte Carlo was originally developed for calculating equilibrium properties of physical systems .In calculations we optimized the geometry and defi ned Potential Energy of the nanotube structure by performing molecular mechanics calculation using MM+ force fi eld, if too large a time step is used in Monte Carlo simulation, it is possible to have a basic instability in the equations that result in a molecule blowing apart, we need small time steps to preserve integration accuracy, however in the Monte Carlo time step 50 femtoseconds (0.05ps) was appropriate. next step we calculated the Vibrational modes of the tube by applying the semi-empirical molecular orbital method. In this paper, we have studies the stability of CNT-Amino acids clusters using by semi-empirical method and investigation of vibrational frequencies and electrical properties. In the more the potential energy increases the more the conductivity of nanochannels decreases and we chose the least energy among nanotube and amino acid complexes. Also the more energy we use, the more conductivity we will have; therefore, we choose the complex which conducts the most current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.