This work proposes a novel Energy-aware Network Operator Search (ENOS) approach to address the energy-accuracy trade-offs of a deep neural network (DNN) accelerator. In recent years, novel hardwarefriendly inference operators such as binary-weight, multiplication-free, and deep-shift have been proposed to improve the computational efficiency of a DNN accelerator. However, simplifying DNN operators invariably comes at lower accuracy, especially on complex processing tasks. While prior works generally implement the same inference operator throughout the neural architecture, the proposed ENOS framework allows an optimal layer-wise integration of inference operators with optimal precision to maintain high prediction accuracy and high energy efficiency. The search in ENOS is formulated as a continuous optimization problem, solvable using gradient descent methods, thereby minimally increasing the training cost when learning both layer-wise inference operators and weights. Utilizing ENOS, we discuss multiply-accumulate (MAC) cores for digital spatial architectures that can be reconfigured to different operators and varying computing precision. ENOS training methods with single and bi-level optimization objectives are discussed and compared. We also discuss a sequential operator assignment strategy in ENOS that only learns the assignment for one layer in one training step. Furthermore, a stochastic mode of ENOS is also presented. ENOS is characterized on ShuffleNet and SqueezeNet using CIFAR10 and CIFAR100. Compared to the conventional uni-operator approaches, under the same energy budget, ENOS improves accuracy by 10-20%. ENOS also outperforms the accuracy of comparable mixed-precision uni-operator implementations by 3-5% for the same energy budget.INDEX TERMS Low power, deep neural network, mixed-precision learning.
We propose MC-CIM, a compute-in-memory (CIM) framework for robust, yet low power, Bayesian edge intelligence. Deep neural networks (DNN) with deterministic weights cannot express their prediction uncertainties, thereby pose critical risks for applications where the consequences of mispredictions are fatal such as surgical robotics. To address this limitation, Bayesian inference of a DNN has gained attention. Using Bayesian inference, not only the prediction itself, but the prediction confidence can also be extracted for planning risk-aware actions. However, Bayesian inference of a DNN is computationally expensive, illsuited for real-time and/or edge deployment. An approximation to Bayesian DNN using Monte Carlo Dropout (MC-Dropout) has shown high robustness along with low computational complexity. Enhancing the computational efficiency of the method, we discuss a novel CIM module that can perform in-memory probabilistic dropout in addition to in-memory weight-input scalar product to support the method. We also propose a compute-reuse reformulation of MC-Dropout where each successive instance can utilize the product-sum computations from the previous iteration. Even more, we discuss how the random instances can be optimally ordered to minimize the overall MC-Dropout workload by exploiting combinatorial optimization methods. Application of the proposed CIM-based MC-Dropout execution is discussed for MNIST character recognition and visual odometry (VO) of autonomous drones. The framework reliably gives prediction confidence amidst non-idealities imposed by MC-CIM to a good extent. Proposed MC-CIM with 16×31 SRAM array, 0.85 V supply, 16nm low-standby power (LSTP) technology consumes 27.8 pJ for 30 MC-Dropout instances of probabilistic inference in its most optimal computing and peripheral configuration, saving ∼43% energy compared to typical execution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.