We demonstrated a new approach that has potential to assist clinicians in more effectively managing stage I NSCLC patients to reduce cancer recurrence risk.
Radiomic features are being increasingly studied for clinical applications. We aimed to assess the agreement among radiomic features when computed by several groups by using different software packages under very tightly controlled conditions, which included standardized feature definitions and common image data sets. Ten sites (9 from the NCI's Quantitative Imaging Network] positron emission tomography–computed tomography working group plus one site from outside that group) participated in this project. Nine common quantitative imaging features were selected for comparison including features that describe morphology, intensity, shape, and texture. The common image data sets were: three 3D digital reference objects (DROs) and 10 patient image scans from the Lung Image Database Consortium data set using a specific lesion in each scan. Each object (DRO or lesion) was accompanied by an already-defined volume of interest, from which the features were calculated. Feature values for each object (DRO or lesion) were reported. The coefficient of variation (CV), expressed as a percentage, was calculated across software packages for each feature on each object. Thirteen sets of results were obtained for the DROs and patient data sets. Five of the 9 features showed excellent agreement with CV < 1%; 1 feature had moderate agreement (CV < 10%), and 3 features had larger variations (CV ≥ 10%) even after attempts at harmonization of feature calculations. This work highlights the value of feature definition standardization as well as the need to further clarify definitions for some features.
Purpose Recent studies have demonstrated a lack of reproducibility of radiomic features in response to variations in CT parameters. In addition, reproducibility of radiomic features has not been well established in clinical datasets. We aimed to investigate the effects of a wide range of CT acquisition and reconstruction parameters on radiomic features in a realistic setting using clinical low dose lung cancer screening cases. We performed univariable and multivariable explorations to consider the effects of individual parameters and the simultaneous interactions between three different acquisition/reconstruction parameters of radiation dose level, reconstructed slice thickness, and kernel. Method A cohort of 89 lung cancer screening patients were collected that each had a solid lung nodule >4mm diameter. A computational pipeline was used to perform a simulation of dose reduction of the raw projection data, collected from patient scans. This was followed by reconstruction of raw data with weighted filter back projection (wFBP) algorithm and automatic lung nodule detection and segmentation using a computer‐aided detection tool. For each patient, 36 different image datasets were created corresponding to dose levels of 100%, 50%, 25%, and 10% of the original dose level, three slice thicknesses of 0.6 mm, 1 mm, and 2 mm, as well as three reconstruction kernels of smooth, medium, and sharp. For each nodule, 226 well‐known radiomic features were calculated at each image condition. The reproducibility of radiomic features was first evaluated by measuring the intercondition agreement of the feature values among the 36 image conditions. Then in a series of univariable analyses, the impact of individual CT parameters was assessed by selecting subsets of conditions with one varying and two constant CT parameters. In each subset, intraparameter agreements were assessed. Overall concordance correlation coefficient (OCCC) served as the measure of agreement. An OCCC ≥ 0.9 implied strong agreement and reproducibility of radiomic features in intercondition or intraparameter comparisons. Furthermore, the interaction of CT parameters in impacting radiomic feature values was investigated via ANOVA. Results All included radiomic features lacked intercondition reproducibility (OCCC < 0.9) among all the 36 conditions. Out of 226 radiomic features analyzed, only 17 and 18 features were considered reproducible (OCCC ≥ 0.9) to dose and kernel variation, respectively, within the corresponding condition subsets. Slice thickness demonstrated the largest impact on radiomic feature values where only one to five features were reproducible at a few condition subsets. ANOVA revealed significant interactions (P < 0.05) between CT parameters affecting the variability of >50% of radiomic features. Conclusion We systematically explored the multidimensional space of CT parameters in affecting lung nodule radiomic features. Univariable and multivariable analyses of this study not only showed the lack of reproducibility of the majority of radiomic featu...
Purpose With recent substantial improvements in modern computing, interest in quantitative imaging with CT has seen a dramatic increase. As a result, the need to both create and analyze large, high‐quality datasets of clinical studies has increased as well. At present, no efficient, widely available method exists to accomplish this. The purpose of this technical note is to describe an open‐source high‐throughput computational pipeline framework for the reconstruction and analysis of diagnostic CT imaging data to conduct large‐scale quantitative imaging studies and to accelerate and improve quantitative imaging research. Methods The pipeline consists of two, primary “blocks”: reconstruction and analysis. Reconstruction is carried out via a graphics processing unit (GPU) queuing framework developed specifically for the pipeline that allows a dataset to be reconstructed using a variety of different parameter configurations such as slice thickness, reconstruction kernel, and simulated acquisition dose. The analysis portion then automatically analyzes the output of the reconstruction using “modules” that can be combined in various ways to conduct different experiments. Acceleration of analysis is achieved using cluster processing. Efficiency and performance of the pipeline are demonstrated using an example 142 subject lung screening cohort reconstructed 36 different ways and analyzed using quantitative emphysema scoring techniques. Results The pipeline reconstructed and analyzed the 5112 reconstructed datasets in approximately 10 days, a roughly 72× speedup over previous efforts using the scanner for reconstructions. Tightly coupled pipeline quality assurance software ensured proper performance of analysis modules with regard to segmentation and emphysema scoring. Conclusions The pipeline greatly reduced the time from experiment conception to quantitative results. The modular design of the pipeline allows the high‐throughput framework to be utilized for other future experiments into different quantitative imaging techniques. Future applications of the pipeline being explored are robustness testing of quantitative imaging metrics, data generation for deep learning, and use as a test platform for image‐processing techniques to improve clinical quantitative imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.