Urban farming, especially on rooftops, is a popular and growing topic in both the media and the scientific literature, providing a genuine opportunity to meet some of the challenges linked to urban development worldwide. However, relatively little attention has been paid to date to the growing medium of green roofs, i.e., Technosols. A better understanding of the influence of Technosols and the link with ecosystem services is required in order to maximize the environmental benefits of urban rooftop farming. Between March 2013 and March 2015, a pilot project called T4P (Parisian Productive rooftoP, Pilot Experiment) was conducted on the rooftop of AgroParisTech University. Urban organic waste was used, and results were compared with those obtained using a commercial potting soil, based on yield and trace metal concentrations, substrate characterization, and the amount of leaching. An assessment of the ecosystem services expected from the Technosols was undertaken in terms of the output of food (food production and quality), regulation of water runoff (quantity and quality), and the recycling of organic waste. Indicators of these ecosystem services (e.g., yield, annual loss of mass of mineral nitrogen) were identified, measured, and compared with reference cases (asphalt roof, green roof, and cropland). Measured yields were almost equivalent to those obtained from horticultural sources in the same area, and the Technosols also retained 74-84% of the incoming rainfall water. This is the first quantitative analysis of ecosystem services delivered by urban garden rooftops developed on organic wastes, and demonstrates their multifunctional character, as well as allowing the identification of trade-offs. An ecosystem services approach is proposed for the design of soilbased green infrastructure of this kind and more generally for the design of sustainable urban agriculture.
Urban agriculture is sprouting throughout the world nowadays. New forms of urban agriculture are observed such as rooftop farming. In the case of low-tech rooftop farming projects, based on recycled urban waste, one of the key issues is the type of substrate used, as it determines the functions and ecosystem services delivered by the green roof. Using a five year experimental trial, we quantified the food production potential of Technosols created only with urban wastes (green waste compost, crushed wood, spent mushroom), as well as the soil fertility and the potential contamination of food products. Regarding food production, our cropping system showed promising results across the five years, in relation with the high fertility of the Technosols. This fertility was maintained, as well as the nutrients stocks after five cropping years. Most of the edible crops had trace metals contents below existing norms for toxic trace metals with nevertheless a concern regarding certain some trace metals such as Zn and Cu. There was no trace metal accumulation in the Technosols over time except for Zn. This study confirmed that constructing Technosols only from urban wastes is a suitable and efficient solution to design rooftops for edible production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.