Determining the optimal catalyst ink formula for manufacturing membrane electrode assemblies (MEAs) in proton exchange membrane (PEM) fuel cells is important to optimizing their performance. The proper catalyst inks maintain the optimal balance of mass and ion transport in the catalyst layers. Catalyst inks are composed mainly of a carrier, Nafion solution, and a Pt/C catalyst. We investigated the optimal catalyst ink formula by varying these components during fabrication of MEAs by 20-kHz ultrasonic spraying. Various carriers (isopropyl alcohol (IPA), tetrahydrofuran (THF), and ethanol) and Nafion concentrations were investigated when using Pt/C 20% catalyst with a constant Pt loading of 0.3 mg/cm 2 . The catalyst layers of the fabricated MEAs were analyzed using both in-plane and cross-sectional scanning electron microscopy (SEM) images. The thickness of the catalyst layer depended on the type of carrier, with IPA, THF, and ethanol yielding thicknesses of 28, 22, and 18 μm, respectively. Polarization curves were used to determine the fuel cell performance. MEAs fabricated with ethanol preformed better than with IPA or THF; yielding a current density of 697.02 mA/cm 2 at a cell potential of 0.6 V. The optimal Nafion concentration was 20, 25, and 30 wt% for ethanol, IPA, and THF, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.