The drug l-asparaginase is a cornerstone in the treatment of acute lymphoblastic leukemia (ALL). The native E. colil-asparaginase used in Brazil until recently has been manufactured by Medac/Kyowa. Then a decision was taken by the Ministry of Health in 2017 to supply the National Health System with a cheaper alternative l-asparaginase manufactured by Beijing SL Pharmaceutical, called Leuginase®. As opposed to Medac, the asparaginase that has been in use in Brazil under the trade name of Aginasa®, it was not possible to find a single entry with the terms Leuginase in the Pubmed repository. The apparent lack of clinical studies and the scarcity of safety information provided to the hospitals by the drug distributor created a debate among Brazilian pediatric oncologists about issues of safety and efficacy that culminated eventually in a court decision to halt the distribution of the new drug all over the country. Boldrini Children's Center, a non-profit pediatric oncohematology hospital, has conducted its own evaluation of Leuginase®. Mass spectrometry analyses found at least 12 different contaminating host-cell proteins (HCP) in Leuginase®. The presence of two HCP (beta-lactamase and malate dehydrogenase) was confirmed by orthogonal methodologies. The relative number of HCP peptides ranged from 19 to 37% of the total peptides identified by mass spectrometry. In vivo studies in mice injected with Leuginase® revealed a 3 times lower plasma bioavailability and the development of higher antibody titres against l-asparaginase in comparison to Aginasa®-injected animals. The decision to buy a new drug based on its price alone is not safe. Developing countries are especially vulnerable to cheaper alternatives that lack solid quality assurance.
BackgroundThe spontaneous immortalization of primary malignant cells is frequently assigned to their genetic instability during in vitro culturing. In this study, the new epithelial ovarian cancer cell line CAISMOV24 was described and compared with its original low-grade serous ovarian carcinoma.MethodsThe in vitro culture was established with cells isolated from ascites of a 60-year-old female patient with recurrent ovarian cancer. The CAISMOV24 line was assessed for cell growth, production of soluble biomarkers, expression of surface molecules and screened for typical mutations found in serous ovarian carcinoma. Additionally, comparative genomic hybridization was employed to compare genomic alterations between the CAISMOV24 cell line and its primary malignant cells.ResultsCAISMOV24 has been in continuous culture for more than 30 months and more than 100 in vitro passages. The cell surface molecules EpCAM, PVR and CD73 are overexpressed on CAISMOV24 cells compared to the primary malignant cells. CAISMOV24 continues to produce CA125 and HE4 in vitro. Although the cell line had developed alongside the accumulation of genomic alterations (28 CNV in primary cells and 37 CNV in CAISMOV24), most of them were related to CNVs already present in primary malignant cells. CAISMOV24 cell line harbored KRAS mutation with wild type TP53, therefore it is characterized as low-grade serous carcinoma.ConclusionOur results corroborate with the idea that genomic alterations, depicted by CNVs, can be used for subtyping epithelial ovarian carcinomas. Additionally, CAISMOV24 cell line was characterized as a low-grade serous ovarian carcinoma, which still resembles its primary malignant cells.Electronic supplementary materialThe online version of this article (10.1186/s12885-017-3716-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.