This paper presents Tebaldi, a distributed key-value store that explores new ways to harness the performance opportunity of combining different specialized concurrency control mechanisms (CCs) within the same database. Tebaldi partitions conflicts at a fine granularity and matches them to specialized CCs within a hierarchical framework that is modular, extensible, and able to support a wide variety of concurrency control techniques, from single-version to multiversion and from lock-based to timestamp-based. When running the TPC-C benchmark, Tebaldi yields more than 20× the throughput of the basic two-phase locking protocol, and over 3.7× the throughput of Callas, a recent system that, like Tebaldi, aims to combine different CCs.
Many service applications use actors as a programming model for the middle tier, to simplify synchronization, fault-tolerance, and scalability. However, efficient operation of such actors in multiple, geographically distant datacenters is challenging, due to the very high communication latency. Caching and replication are essential to hide latency and exploit locality; but it is not a priori clear how to combine these techniques with the actor programming model.We present Geo, an open-source geo-distributed actor system that improves performance by caching actor states in one or more datacenters, yet guarantees the existence of a single latest version by virtue of a distributed cache coherence protocol. Geo's programming model supports both volatile and persistent actors, and supports updates with a choice of linearizable and eventual consistency. Our evaluation on several workloads shows substantial performance benefits, and confirms the advantage of supporting both replicated and single-instance coherence protocols as configuration choices. For example, replication can provide fast, always-available reads and updates globally, while batching of linearizable storage accesses at a single location can boost the throughput of an order processing workload by 7x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.