An extension of the dual weighted residual (DWR) method to the analysis of electromagnetic waves in a periodic diffraction grating is presented. Using the α,0-quasi-periodic transformation, an upper bound for the a posteriori error estimate is derived. This is then used to solve adaptively the associated Helmholtz problem. The goal is to achieve an acceptable accuracy in the computed diffraction efficiency while keeping the computational mesh relatively coarse. Numerical results are presented to illustrate the advantage of using DWR over the global a posteriori error estimate approach. The application of the method in biomimetic, to address the complex diffraction geometry of the Morpho butterfly wing is also discussed.
This paper considers a finite element approach to modeling electromagnetic waves in a periodic diffraction grating. In particular, an a priori error estimate associated with the α-quasi-periodic transformation is derived. This involves the solution of the associated Helmholtz problem being written as a product of e(iαx) and an unknown function called the α-quasi-periodic solution. To begin with, the well-posedness of the continuous problem is examined using a variational formulation. The problem is then discretized, and a rigorous a priori error estimate, which guarantees the uniqueness of this approximate solution, is derived. In previous studies, the continuity of the Dirichlet-to-Neumann map has simply been assumed and the dependency of the regularity constant on the system parameters, such as the wavenumber, has not been shown. To address this deficiency, in this paper an explicit dependence on the wavenumber and the degree of the polynomial basis in the a priori error estimate is obtained. Since the finite element method is well known for dealing with any geometries, comparison of numerical results obtained using the α-quasi-periodic transformation with a lattice sum technique is then presented.
An a priori error estimate using a so called α,β‐ periodic transformation to study electromagnetic waves in a periodic diffraction grating is derived. It has been reported for single scattering that there is an instability in numerical methods for high wavenumbers. To address this problem, the analytical solution of the scattering problem when the domain is scatterer free and an unknown function called the α,β‐quasi periodic solution are used to transform the associated Helmholtz problem. The well‐posedness of the resulting continuous problem is analysed before approximating its solution using a finite element discretization. To guarantee the uniqueness of this approximate solution, an a priori error estimate is derived. Finally, numerical results are presented that suggest that the α,β‐quasi periodic method converges at a far lower number of degrees of freedom than the α,0‐quasi periodic method reported previously; especially for high wavenumbers. This is particularly true when the incident wave only undergoes a small perturbation because of the presence of the scatterer. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.