is an educational researcher who works to make engineering and science more relevant, accessible, and understandable, especially for underserved and underrepresented populations. She focuses on developing research-based, field-tested curricula. For sixteen years, she worked as a vice president at the Museum of Science where she was the Founding Director of Engineering is Elementary, a groundbreaking program that integrates engineering concepts into preschool, elementary, and middle school curriculum and teacher professional development. Her recent book, Engineering in Elementary STEM Education, describes what she has learned. Cunningham has previously served as director of engineering education research at the Tufts University Center for Engineering Educational Outreach, where her work focused on integrating engineering with science, technology, and math in professional development for K-12 teachers. She also directed the Women's Experiences in College Engineering (WECE) project, the first national, longitudinal, large-scale study of the factors that support young women pursuing engineering degrees. At Cornell University, where she began her career, she created environmental science curricula and professional development. Cunningham has received a number of awards; in 2017 her work was recognized with the prestigious Harold W. McGraw Jr. Prize in Education. Cunningham holds joint B.A. and M.A. degrees in biology from Yale University and a Ph.D. in Science Education from Cornell University.
In this position paper, we draw from previous research and theoretical developments in the field to propose a set of affordances of engineering with English learners (ELs). Students learning both the language of instruction (e.g., English) and academic subject matter (e.g., engineering, mathematics, science) face the challenge of making sense of linguistically complex terminology of disciplinary knowledge. We posit that engineering provides a unique set of benefits for such learners due to a number of factors associated with the discipline of engineering, including the materiality of the knowledge, the potential for multimodal communication, and the contextualization of knowledge in specific task‐oriented activities. We also recognize that engineering benefits from participation by diverse learners including ELs as solutions are strengthened by a multitude of ideas and perspectives. Although this paper focuses on ELs, we recognize that such affordances are also valuable for all students, including native English speakers, and that they may be particularly important for students who may benefit from additional linguistic supports for developing academic literacies. We identify the affordances, anchoring them in elementary classroom experiences and teacher testimonials, and propose a research agenda for future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.