A considerable number of cognitive processes depend on the integration of multisensory information. The brain integrates this information, providing a complete representation of our surrounding world and giving us the ability to react optimally to the environment. Infancy is a period of great changes in brain structure and function that are reflected by the increase of processing capacities of the developing child. However, it is unclear if the optimal use of multisensory information is present early in childhood or develops only later, with experience. The first part of this review has focused on the typical development of multisensory integration (MSI). We have described the two hypotheses on the developmental process of MSI in neurotypical infants and children, and have introduced MSI and its neuroanatomic correlates. The second section has discussed the neurodevelopmental trajectory of MSI in cognitively-challenged infants and children. A few studies have brought to light various difficulties to integrate sensory information in children with a neurodevelopmental disorder. Consequently, we have exposed certain possible neurophysiological relationships between MSI deficits and neurodevelopmental disorders, especially dyslexia and attention deficit disorder with/without hyperactivity.
This study assessed whether the neonatal brain recruits different neural networks for native and non-native languages at birth. Twenty-seven one-day-old full-term infants underwent functional near-infrared spectroscopy (fNIRS) recording during linguistic and non-linguistic stimulation. Fourteen newborns listened to linguistic stimuli (native and non-native language stories) and 13 newborns were exposed to non-linguistic conditions (native and non-native stimuli played in reverse). Comparisons between left and right hemisphere oxyhemoglobin (HbO2) concentration changes over the temporal areas revealed clear left hemisphere dominance for native language, whereas non-native stimuli were associated with right hemisphere lateralization. In addition, bilateral cerebral activation was found for non-linguistic stimulus processing. Overall, our findings indicate that from the first day after birth, native language and prosodic features are processed in parallel by distinct neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.