We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.
Valiant introduced 20 years ago an algebraic complexity theory to study the complexity of polynomial families. The basic computation model used is the arithmetic circuit, which makes these classes very easy to define and open to combinatorial techniques. In this paper we gather known results and new techniques under a unifying theme, namely the restrictions imposed upon the gates of the circuit, building a hierarchy from formulas to circuits. As a consequence we get simpler proofs for known results such as the equality of the classes VNP and VNP e or the completeness of the Determinant for VQP, and new results such as a characterization of the classes VQP and VP (which we can also apply to the Boolean class LOGCFL) or a full answer to a conjecture in Bürgisser's book [Completeness and reduction in algebraic complexity theory, Algorithms and Computation in Mathematics, vol. 7, Springer, Berlin, 2000]. We also show that for circuits of polynomial depth and unbounded size these models all have the same expressive power and can be used to characterize a uniform version of VNP.
We show that the problem of determining if a given integer linear recurrent sequence has a zero-a problem that is known as "Pisot's problem"-is NP-hard. With a similar argument we show that the problem of finding the minimal realization dimension of a one-letter max-plus rational series is NP-hard. This last result answers a folklore question raised in the control literature on the max-plus approach to discrete event systems. Our results are simple consequences of a construction due to Stockmeyer and Meyer.
Simon, in his FOCS'94 paper, was the first to show an exponential gap between classical and quantum computation. The problem he dealt with is now part of a well-studied class of problems, the hidden subgroup problems. We study Simon's problem from the point of view of quantum query complexity and give here a first non-trivial lower bound on the query complexity of a hidden subgroup problem, namely Simon's problem. More generally, we give a lower bound which is optimal up to a constant factor for any abelian group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.