Background Premenopausal women undergoing chemotherapy are at risk for amenorrhea and impaired fertility. Our objective was to assess levels of Mullerian Inhibitory Substance (MIS), Estrodiol(E2), Follicle Stimulating Hormone(FSH) and menstrual status, in women undergoing chemotherapy. Patients and Methods We conducted a nested prospective cohort study in women aged <40 years with breast cancer (BC) undergoing adjuvant chemotherapy (n=26). Serum MIS, FSH, and E2 were measured before chemotherapy (baseline) and at weeks 6, 12, 36 and 52. Controls were 134 age-matched women with known fertility. Hormone levels were compared between the cases and controls at baseline. Differences between amenorrhea and age subgroups were tested with the non-parametric Wilcoxon two-sample test using a two-sided alpha of 0.05. Results Subjects with BC and age-matched controls had similar baseline MIS levels (median 0.94 vs. 0.86 ng/ml, p>0.05). Serum MIS decreased significantly at 6 weeks and remained suppressed for 52 weeks. E2 levels decreased, and FSH levels increased during chemotherapy, however, at 52 weeks, the levels returned to baseline. At 52 weeks, only1 patient had MIS above the lower normal range, 15 had return of menstrual function, 11 had premenopausal levels of FSH, and 13 had follicular phase levels of E2. In women <35, 25% remained amenorrheic, whereas in women over 35, 50% were amenorrheic. Amenorrheic and menstruating women had similar MIS values at baseline and follow-up. Conclusions In young women with BC, chemotherapy decreases MIS rapidly and dramatically. Rapid reductions in MIS do not predict subsequent menstrual function. Ovarian reserve and endocrine function may be affected differently by chemotherapy.
Implantation of an embryo induces rapid proliferation and differentiation of uterine stromal cells, forming a new structure, the decidua. One salient feature of decidua formation is a marked increase in maternal angiogenesis. Vascular endothelial growth factor (VEGF)-dependent pathways are active in the ovary, uterus, and embryo, and inactivation of VEGF function in any of these structures might prevent normal pregnancy development. We hypothesized that decidual angiogenesis is regulated by VEGF acting through specific VEGF receptors (VEGFRs). To test this hypothesis, we developed a murine pregnancy model in which systemic administration of a receptor-blocking antibody would act specifically on uterine angiogenesis and not on ovarian or embryonic angiogenesis. In our model, ovarian function was replaced with exogenous progesterone, and blocking antibodies were administered prior to embryonic expression of VEGFRs. After administration of a single dose of the anti-VEGFR-2 antibody during the peri-implantation period, no embryos were detected on embryonic d 10.5. The pregnancy was disrupted because of a significant reduction in decidual angiogenesis, which under physiological conditions peaks on embryonic d 5.5 and 6.5. Inactivation of VEGFR-3 reduced angiogenesis in the primary decidual zone, whereas administration of VEGFR-1 blocking antibodies had no effect. Pregnancy was not disrupted after administration of anti-VEGFR-3 or anti-VEGFR-1 antibodies. Thus, the VEGF/VEGFR-2 pathway plays a key role in the maintenance of early pregnancy through its regulation of peri-implantation angiogenesis in the uterine decidua. This newly formed decidual vasculature serves as the first exchange apparatus for the developing embryo until the placenta becomes functionally active.
c-Myc is associated with cell growth and cycling in many tissues and its deregulated expression is causally implicated in cancer, particularly lymphomagenesis. However, the contribution of c-Myc to lymphocyte development is unresolved. We show here that the formation of normal lymphocytes by c-Myc-/- cells is selectively defective. c-Myc-/- cells are inefficient, in an age-dependent manner, at populating the thymus, and subsequent thymocyte maturation is ineffective: they fail to grow and proliferate normally at the late double-negative (DN) CD4-CD8- stage. Because N-Myc expression in thymocytes usually declines at the late DN stage, these results confirm that the nonredundant contributions of Myc family members to development are related to their distinct patterns of developmental gene expression.
Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.