We study propagation of closed bosonic strings in torsional Newton-Cartan geometry based on a recently proposed Polyakov type action derived by dimensional reduction of the ordinary bosonic string along a null direction. We generalize the Polyakov action proposal to include matter, i.e. the 2-form and the 1-form that originates from the Kalb- Ramond field and the dilaton. We determine the conditions for Weyl invariance which we express as the beta-function equations on the worldsheet, in analogy with the usual case of strings propagating on a pseudo-Riemannian manifold. The critical dimension of the TNC space-time turns out to be 25. We find that Newton’s law of gravitation follows from the requirement of quantum Weyl invariance in the absence of torsion. Presence of the 1-form requires torsion to be non vanishing. Torsion has interesting consequences, in particular it yields a mass term and an advection term in the generalized Newton’s law. U(1) mass invariance of the theory is an important ingredient in deriving the beta functions.
Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.
We consider a non-relativistic limit of the bosonic sector of eleven-dimensional supergravity, leading to a theory based on a covariant ‘membrane Newton-Cartan’ (MNC) geometry. The local tangent space is split into three ‘longitudinal’ and eight ‘transverse’ directions, related only by Galilean rather than Lorentzian symmetries. This generalises the ten-dimensional stringy Newton-Cartan (SNC) theory. In order to obtain a finite limit, the field strength of the eleven-dimensional four-form is required to obey a transverse self-duality constraint, ultimately due to the presence of the Chern-Simons term in eleven dimensions. The finite action then gives a set of equations that is invariant under longitudinal and transverse rotations, Galilean boosts and local dilatations. We supplement these equations with an extra Poisson equation, coming from the subleading action. Reduction along a longitudinal direction gives the known SNC theory with the addition of RR gauge fields, while reducing along a transverse direction yields a new non-relativistic theory associated to D2 branes. We further show that the MNC theory can be embedded in the U-duality symmetric formulation of exceptional field theory, demonstrating that it shares the same exceptional Lie algebraic symmetries as the relativistic supergravity, and providing an alternative derivation of the extra Poisson equation.
Abstract:We construct explicit examples of microstate geometries of four-dimensional black holes that lift to smooth horizon-free geometries in five dimensions. Solutions consist of half-BPS D-brane atoms distributed in R 3 . Charges and positions of the D-brane centers are constrained by the bubble equations and boundary conditions ensuring the regularity of the metric and the match with the black hole geometry. In the case of three centers, we find that the moduli spaces of solutions includes disjoint one-dimensional components of (generically) finite volume.
Fluctuations around critical behavior of a holographic charged plasma are investigated by studying quasi-normal modes of the corresponding black branes in 5D Einstein-Maxwell-Dilaton gravity. The near horizon geometry of black branes approaches the well-known 2D charged string black hole in the critical limit, for which a world-sheet description is available, and the corresponding quasi-normal modes can be obtained analytically from the reflection amplitude of the 2D black hole geometry. We find two distinct set of modes: a purely imaginary “decoupled” set, directly following from the reflection amplitude, and a “non-decoupled” set that was already identified in the neutral holographic plasma in [1]. In the extremal limit, the former set of imaginary quasi-normal modes coalesce on a branch cut starting from the origin, signaling breakdown of hydrodynamic approximation. We further complete the black brane geometry with a slice of AdS near the boundary, to allow for a holographic construction, and find another set of modes localized in the UV. Finally, we develop an alternative WKB method to obtain the quasi-normal modes in the critical limit and apply this method to study the spectrum of hyperscaling-violating Lifshitz black branes. The critical limit of the plasma we consider in this paper is in one-to-one correspondence with the large D limit of Einstein’s gravity which allows for an alternative interesting interpretation of our findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.