The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.
In nature, annual plants respond to abiotic stresses by activating a specific genetic program leading to early flowering and accelerated senescence. Although, in nature, this phenomenon supports survival under unfavorable environmental conditions, it may have negative agro-economic impacts on crop productivity. Overcoming this genetic programing by cytokinins (CK) has recently been shown in transgenic plants that overproduce CK. These transgenic plants displayed a significant increase in plant productivity under drought stress conditions. We investigated the role of CK in reverting the transcriptional program that is activated under abiotic stress conditions and allowing sustainable plant growth. We employed 2 complementary approaches: Ectopic overexpression of CK, and applying exogenous CK to detached Arabidopsis leaves. Transgenic Arabidopsis plants transformed with the isopentyltransferase (IPT) gene under the regulation of the senescence associated receptor kinase (SARK) promoter displayed a significant drought resistance. A transcriptomic analysis using RNA sequencing was performed to explore the response mechanisms under elevated CK levels during salinity stress. This analysis showed that under such stress, CK triggered transcriptional reprograming that resulted in attenuated stress-dependent inhibition of vegetative growth and delayed premature plant senescence. Our data suggest that elevated CK levels led to stress tolerance by retaining the expression of genes associated with plant growth and metabolism whose expression typically decreases under stress conditions. In conclusion, we hypothesize that CK allows sustainable plant growth under unfavorable environmental conditions by activating gene expression related to growth processes and by preventing the expression of genes related to the activation of premature senescence.
With increased concerns over failures in vegetable and fruit sanitation, evaluating the efficacy of widely approved chemicals is ever more important. The purpose of this study was to determine whether sanitation treatments are equally effective against indicator bacteria and human enteric pathogens on cucumber and parsley. We provide here an experimental overview on the efficacy of common sanitation methods, which are based on peracetic acid-hydrogen peroxide, sodium dichloroisocyanurate, and the quaternary ammonium compound didecyldimethylammonium chloride. The sanitizers were tested for their activity against natural populations of total aerobic microorganisms, enterococci, and coliforms, and against the enteric pathogen Salmonella Typhimurium ATCC 14028 (which was added artificially). Results revealed that compared with washing parsley and cucumbers with water, treatments with all three sanitizers were not effective, resulting in a maximal reduction of only 0.7 log CFU of Salmonella Typhimurium. These sanitizers were also not effective in removal of natural bacteria from parsley (maximal reduction was 0.7 log CFU). Sanitation of cucumber was more successful; peracetic acid showed the most effective result, with a reduction of 2.7 log in aerobic microorganisms compared with cucumbers washed with water. Still, removal of natural bacteria from cucumbers proved more efficient than the removal of Salmonella Typhimurium. This may create a debate about the necessity of the sanitation and its contribution to safety, because sanitation of some contaminated vegetables may result in an increased likelihood of foods that, although they are given good hygienic ratings due to low microbial counts, harbor pathogens.
Hemolysis of blood agar is broadly used as a diagnostic tool for identifying and studying pathogenic microorganisms. We have recently shown that alcohol vapors can confer hemolytic properties on otherwise nonhemolytic fungi (microbial alcohol-conferred hemolysis; MACH). Until now, this phenomenon has been found in various yeast strains and other fungi, but only in a few bacterial species (e.g., staphylococci). In the current study we (1) determined the extent of the above phenomenon in various gram-positive and gram-negative laboratory bacterial strains and in clinical bacterial isolates, (2) validated the observed hemolysis using a quantitative technique, and (3) provided evidence that the observed alcohol-mediated hemolysis may, at least in part, be related to synthesis of hemolytic lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.