Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.
Muscle contraction is driven by a change in shape of the myosin head region that links the actin and myosin filaments. Tilting of the light-chain domain of the head with respect to its actin-bound catalytic domain is thought to be coupled to the ATPase cycle. Here, using X-ray diffraction and mechanical data from isolated muscle fibres, we characterize an elastic bending of the heads that is independent of the presence of ATP. Together, the tilting and bending motions can explain force generation in isometric muscle, when filament sliding is prevented. The elastic strain in the head is 2.0-2.7 nm under these conditions, contributing 40-50% of the compliance of the muscle sarcomere. We present an atomic model for changes in head conformation that accurately reproduces the changes in the X-ray diffraction pattern seen when rapid length changes are applied to muscle fibres both in active contraction and in the absence of ATP. The model predictions are relatively independent of which parts of the head are assumed to bend or tilt, but depend critically on the measured values of filament sliding and elastic strain.
Axial x-ray diffraction patterns from single intact fibers of frog skeletal muscle were recorded by using a highly collimated x-ray beam at the European Synchrotron Radiation Facility. During isometric contraction at sarcomere lengths 2.2-3.2 m, the M3 x-ray reflection, associated with the repeat of myosin heads along the filaments, was resolved into two peaks. The total M3 intensity decreased linearly with increasing sarcomere length and was directly proportional to the degree of overlap between myosin and actin filaments, showing that it comes from myosin heads in the overlap region. The separation between the M3 peaks was smaller at longer sarcomere length and was quantitatively explained by x-ray interference between myosin heads in the two overlap regions of each sarcomere. The relative intensity of the M3 peaks was independent of sarcomere length, showing that the axial periodicities of the nonoverlap and overlap regions of the myosin filament have the same value, 14.57 nm, during active contraction. In resting fibers the periodicity is 14.34 nm, so muscle activation produces a change in myosin filament structure in the nonoverlap as well as the overlap part of the filament. The results establish x-ray interferometry as a new tool for studying the motions of myosin heads during muscle contraction with unprecedented spatial resolution. In resting skeletal muscles from vertebrates, the myosin head domains or cross-bridges have a roughly helical arrangement, with three layers of heads in each 43-nm helical repeat (1). During isometric contraction, this helical structure disappears, but the myosin heads retain a strong axial periodicity of 14.57 nm, 1.6% larger than the corresponding value at rest, 14.34 nm (1-7). Both structures produce an intense axial x-ray ref lection called the M3. The M3 ref lection during isometric contraction has been associated with force-generating myosin heads oriented roughly perpendicular to the filament axis (3, 4, 8 -11), and the intensity of this ref lection has been used to investigate the changes in myosin head conformation that drive force generation (8 -11). The transition between myosin head conformations with 14.34 and 14.57 nm axial periodicities has roughly the same time course as isometric force development after electrical stimulation (3, 4, 7), but its functional significance is not understood.We investigated this transition in isolated intact muscle fibers, by using the unprecedented spatial resolution of the small-angle x-ray scattering beamline ID2-SAXS at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). At this resolution, the M3 reflection is split into closely spaced peaks by interference between the two arrays of myosin heads in each bipolar myosin filament (1, 2, 12). We recorded the interference fine structure of the M3 reflection during isometric contraction at different sarcomere lengths in the range 2.0 to 3.6 m, to vary the degree of overlap between the myosin-and actin-containing filaments. The sarcomere length controls both the nu...
Generation of force and shortening in striated muscle is due to the cyclic interactions of the globular portion (the head) of the myosin molecule, extending from the thick filament, with the actin filament. The work produced in each interaction is due to a conformational change (the working stroke) driven by the hydrolysis of ATP on the catalytic site of the myosin head. However, the precise mechanism and the size of the force and length step generated in one interaction are still under question. Here we reinvestigate the endothermic nature of the force‐generating process by precisely determining, in tetanised intact frog muscle fibres under sarcomere length control, the effect of temperature on both isometric force and force response to length changes. We show that raising the temperature: (1) increases the force and the strain of the myosin heads attached in the isometric contraction by the same amount (∼70 %, from 2 to 17 °C); (2) increases the rate of quick force recovery following small length steps (range between −3 and 2 nm (half‐sarcomere)−1) with a Q10 (between 2 and 12 °C) of 1.9 (releases) and 2.3 (stretches); (3) does not affect the maximum extent of filament sliding accounted for by the working stroke in the attached heads (10 nm (half‐sarcomere)−1). These results indicate that in isometric conditions the structural change leading to force generation in the attached myosin heads can be modulated by temperature at the expense of the structural change responsible for the working stroke that drives filament sliding. The energy stored in the elasticity of the attached myosin heads at the plateau of the isometric tetanus increases with temperature, but even at high temperature this energy is only a fraction of the mechanical energy released by attached heads during filament sliding.
Muscle force results from the interaction of the globular heads of myosin-II with actin filaments. We studied the structure-function relationship in the myosin motor in contracting muscle fibers by using temperature jumps or length steps combined with time-resolved, low-angle X-ray diffraction. Both perturbations induced simultaneous changes in the active muscle force and in the extent of labeling of the actin helix by stereo-specifically bound myosin heads at a constant total number of attached heads. The generally accepted hypothesis assumes that muscle force is generated solely by tilting of the lever arm, or the light chain domain of the myosin head, about its catalytic domain firmly bound to actin. Data obtained suggest an additional force-generating step: the "roll and lock" transition of catalytic domains of non-stereo-specifically attached heads to a stereo-specifically bound state. A model based on this scheme is described to quantitatively explain the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.