Aging is often perceived as a degenerative process caused by random accrual of cellular damage over time. In spite of this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, it is difficult to ignore the likelihood that a defined and shared mechanism instead, underlies the aging process. To address this, we generated 10,000 methylation arrays, each profiling up to 37,000 cytosines in highly-conserved stretches of DNA, from over 59 tissue-types derived from 128 mammalian species. From these, we identified and characterized specific cytosines, whose methylation levels change with age across mammalian species. Genes associated with these cytosines are greatly enriched in mammalian developmental processes and implicated in age-associated diseases. From the methylation profiles of these age-related cytosines, we successfully constructed three highly accurate universal mammalian clocks for eutherians, and one universal clock for marsupials. The universal clocks for eutherians are similarly accurate for estimating ages (r>0.96) of any mammalian species and tissue with a single mathematical formula. Collectively, these new observations support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new and compelling evidence.
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background The gut microbiome is important to immune health, metabolism, and hormone regulation. Understanding host–microbiome relationships in captive animals may lead to mediating long term health issues common in captive animals. For instance, zoo managed African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) experience low reproductive rates, high body condition, and gastrointestinal (GI) issues. We leveraged an extensive collection of fecal samples and health records from the Elephant Welfare Study conducted across North American zoos in 2012 to examine the link between gut microbiota and clinical health issues, reproductive hormones, and metabolic hormones in captive elephants. We quantified gut microbiomes of 69 African and 48 Asian elephants from across 50 zoos using Illumina sequencing of the 16S rRNA bacterial gene. Results Elephant species differed in microbiome structure, with African elephants having lower bacterial richness and dissimilar bacterial composition from Asian elephants. In both species, bacterial composition was strongly influenced by zoo facility. Bacterial richness was lower in African elephants with recent GI issues, and richness was positively correlated with metabolic hormone total triiodothyronine (total T3) in Asian elephants. We found species-specific associations between gut microbiome composition and hormones: Asian elephant gut microbiome composition was linked to total T3 and free thyroxine (free T4), while fecal glucocorticoid metabolites (FGM) were linked to African elephant gut microbiome composition. We identified many relationships between bacterial relative abundances and hormone concentrations, including Prevotella spp., Treponema spp., and Akkermansia spp. Conclusions We present a comprehensive assessment of relationships between the gut microbiome, host species, environment, clinical health issues, and the endocrine system in captive elephants. Our results highlight the combined significance of host species-specific regulation and environmental effects on the gut microbiome between two elephant species and across 50 zoo facilities. We provide evidence of clinical health issues, reproductive hormones, and metabolic hormones associated with the gut microbiome structure of captive elephants. Our findings establish the groundwork for future studies to investigate bacterial function or develop tools (e.g., prebiotics, probiotics, dietary manipulations) suitable for conservation and zoo management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.