Menin is a tumor suppressor protein whose loss or inactivation causes multiple endocrine neoplasia type 1 (MEN1), a hereditary autosomal dominant tumor syndrome characterized by tumorigenesis in multiple endocrine organs1. Menin interacts with a multitude of proteins and involves in a variety of cellular processes2–6. Menin binds the Jun family transcription factor JunD and inhibits its transcriptional activity7,8. Several MEN1 missense mutations disrupted the menin-JunD interaction suggestive of a correlation between menin’s tumor suppressor function and its interaction with JunD and suppression of JunD activated transcription8,9. Menin also interacts with mixed lineage leukemia protein 1 MLL1, a histone H3 lysine 4 (H3K4) methyltransferase, and functions as an oncogenic cofactor to upregulate gene (including HOX genes) transcription and promote MLL1 fusion protein (MFP)-induced leukemogenesis10–12. A recent report on menin tethering MLL1 to chromatin binding factor LEDGF indicates menin as a molecular adaptor to coordinate the functions of multiple proteins13. Despite the importance of menin, it still remains poorly understood how menin could interact with many distinct partners and control multiple functions. Here we present the crystal structures of menin, free and in complexes with MLL1 or JunD, or an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JunD in the same manner, but oppositely regulates transcription. The menin-JunD interaction blocks JNK kinase-meidated JunD phosphorylation, a crucial event for JunD activation.Moreover, menin functions as a scaffold molecule to promote gene transcription by binding MLL1 through the peptide-pocket yet interacting with LEDGF at a distinct surface.
SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis.
The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis. We found that butyrate, in addition to suppressing LPS-induced bone marrow-derived DC maturation and inhibiting DC IL-12 production, significantly induced IL-23 expression. The upregulation of mRNA subunit IL-23p19 at the pretranslational level was consistent with the role of HDACi on the epigenetic modification of gene expression. Furthermore, the mechanism of IL-23p19 upregulation was independent of Stat3 and ZBP89. Coculture of splenocytes with LPS-stimulated DCs pretreated with or without butyrate was performed and showed a significant induction of IL-17 and IL-10. We demonstrated further the effect of butyrate in vivo using dextran sulfate sodium (DSS)-induced colitis and found that the addition of butyrate in the drinking water of mice worsened DSS-colitis. This is in contrast to the daily intraperitoneal butyrate injection of DSS-treated mice, which mildly improved disease severity. Our study highlights a novel effect of butyrate in upregulating IL-23 production of activated DCs and demonstrates a difference in the host response to the oral vs. systemic route of butyrate administration.
SUMMARY During development and regeneration, matrix progenitors undergo terminal differentiation to form the concentric layers of the hair follicle. These differentiation events are thought to require signals from the mesenchymal dermal papilla (DP); however, it remains unclear how DP-progenitor cell interactions govern specific cell fate decisions. Here, we show that the hair follicle differentiated layers are specified asynchronously, with early matrix progenitors initiating differentiation prior to surrounding the DP. Furthermore, these early matrix cells can undergo terminal differentiation in the absence of Shh, BMP signaling, and DP maturation. Whereas early matrix progenitors form the hair follicle companion layer, later matrix populations progressively form the inner root sheath and hair shaft. Together, our findings characterize some of the earliest terminal differentiation events in the hair follicle, and reveal that the matrix progenitor pool can be divided into early and late phases based on distinct temporal, molecular and functional characteristics.
The formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds. These migratory keratinocytes express keratin 79 (K79) and stream out of the hair germ and into the epidermis prior to lumen formation in the embryo. Remarkably, this process is recapitulated during hair regeneration in the adult mouse, when K79+ cells migrate out of the reactivated secondary hair germ prior to formation of a new hair canal. During homeostasis, K79 + cells line the hair follicle infundibulum, a domain we show to be multilayered, biochemically distinct and maintained by Lrig1 + stem cell-derived progeny. Upward movement of these cells sustains the infundibulum, while perturbation of this domain during acne progression is often accompanied by loss of K79. Our findings uncover previously unappreciated long-distance cell movements throughout the life cycle of the hair follicle, and suggest a novel mechanism by which the follicle generates its hollow core through outward cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.