Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where membrane proteins are inserted. It has been postulated that PDs could be formed by lipid rafts, however no structural evidence has shown to visualize and analyse their lipid components. In this perspective article, we discuss proposed experiments to characterize lipid rafts and proteins in the PDs. By using atomic force microscopy (AFM) and mass spectrometry (MS) of purified PD vesicles it is possible to determine the presence of lipid rafts, specific bound proteins and the lipidomic profile of the PD under physiological conditions and after changing transport permeability. In addition, MS can determine the stoichiometry of intact membrane proteins inserted in lipid rafts. This will give novel insights into the role of membrane proteins and lipid rafts on the PD structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.