The avian retina is composed of different types of photoreceptors responsible for image and non-image forming tasks: the visual photoreceptor cells (cones and rods), the melanopsin-expressing intrinsically photoresponsive retinal ganglion cells (ipRGCs) and horizontal cells. Furthermore, the non-visual opsins Opn3 (encephalopsin/panaopsin) and Opn5 (neuropsin) have been shown to be expressed in the vertebrate inner retina, responding to blue (BL) and UV light, respectively. Here we investigated the expression and localization of Opn3 and Opn5 in the developing chick retina at different embryonic days (E) as well as in primary cultures of retinal Müller glial cells (MCs). Opn3 and Opn5 mRNAs and proteins appeared as early as E10 although traces of Opn3- and Opn5-like proteins were seen earlier by E7 in the forming RGC layer and in glial cells extending throughout the developing nuclear layer. Later on, at postnatal days 1–10 (PN1–10) a significant expression of Opn3 was observed in inner retinal cells and processes in plexiform layers, together with expression of the glial markers glutamine synthetase (GS) and the glial fibrillary acidic protein (GFAP). Opn3 and Opn5 were found to be expressed in primary MC cultures prepared at E8 and kept for 2 weeks. In addition, significant effects of BL exposure on Opn3 expression and subcellular localization were observed in MCs as BL significantly increased its levels and modified its nuclear location when compared with dark controls, through a mechanism dependent on protein synthesis. More importantly, a subpopulation of MCs responded to brief BL pulses by increasing intracellular Ca 2+ levels; whereas light-responses were completely abolished with the retinal bleacher hydroxylamine pretreatment. Taken together, our findings show that these two opsins are expressed in inner retinal cells and MCs of the chicken retina at early developmental phases and remain expressed in the mature retina at PN days. In addition, the novel photic responses seen in MCs may suggest another important role for the glia in retinal physiology.
Amphetamine‐induced neuroadaptations involve vascular damage, neuroinflammation, a hypo‐functioning prefrontal cortex (PFC), and cognitive alterations. Brain angiotensin II, through angiotensin type 1 receptor (AT1‐R), mediates oxidative/inflammatory responses, promoting endothelial dysfunction, neuronal oxidative damage and glial reactivity. The present work aims to unmask the role of AT1‐R in the development of amphetamine‐induced changes over glial and vascular components within PFC and hippocampus. Attention deficit was evaluated as a behavioral neuroadaptation induced by amphetamine. Brain microvessels were isolated to further evaluate vascular alterations after amphetamine exposure. Male Wistar rats were administered with AT1‐R antagonist, candesartan, followed by repeated amphetamine. After one week drug‐off period, animals received a saline or amphetamine challenge and were evaluated in behavioral tests. Afterward, their brains were processed for cresyl violet staining, CD11b (microglia marker), GFAP (astrocyte marker) or von Willebrand factor (vascular marker) immunohistochemistry, and oxidative/cellular stress determinations in brain microvessels. Statistical analysis was performed by using factorial ANOVA followed by Bonferroni or Tukey tests. Repeated amphetamine administration increased astroglial and microglial markers immunoreactivity, increased apoptotic cells, and promoted vascular network rearrangement at the PFC concomitantly with an attention deficit. Although the amphetamine challenge improved the attentional performance, it triggers detrimental effects probably because of the exacerbated malondialdehyde levels and increased heat shock protein 70 expression in microvessels. All observed amphetamine‐induced alterations were prevented by the AT1‐R blockade. Our results support the AT1‐R involvement in the development of oxidative/inflammatory conditions triggered by amphetamine exposure, affecting cortical areas and increasing vascular susceptibility to future challenges.
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein-coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuronto-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.