[1] Recent progress is reviewed in the understanding of convective interaction with water vapor and changes associated with water vapor in warmer climates. Progress includes new observing techniques (including isotopic methods) that are helping to illuminate moisture-convection interaction, better observed humidity trends, new modeling approaches, and clearer expectations as to the hydrological consequences of increased specific humidity in a warmer climate. A theory appears to be in place to predict humidity in the free troposphere if winds are known at large scales, providing a crucial link between small-scale behavior and large-scale mass and energy constraints. This, along with observations, supports the anticipated water vapor feedback on climate, though key uncertainties remain connected to atmospheric dynamics and the hydrological consequences of a moister atmosphere. More work is called for to understand how circulations on all scales are governed and what role water vapor plays. Suggestions are given for future research.
Abstract. The size and impacts of anthropogenically induced climate change (AICC) strongly depend on the climate sensitivity, AT2x. If AT2x is less than the lower bound given by the Intergovernmental Panel on Climate Change (IPCC), 1.5øC, then AICC may not be a serious problem for humanity. If AT2x is greater than the upper bound given by the IPCC, 4.5øC, then AICC may be one of the most severe problems of the 21st century. Here we use a simple climate/ocean model, the observed near-surface temperature record, and a bootstrap technique to objectively estimate the probability density function for AT2x. We find that as a result of natural variability and uncertainty in the climatic radiative forcing, the 90% confidence interval for AT2x is 1.0øC to 9.3øC. Consequently, there is a 54% likelihood that AT2x lies outside the IPCC range.
We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloudwater follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.
[1] We have introduced additional NO y sources caused by energetic electron precipitation (EEP) during 1987 into a Chemistry-Climate model. Comparison of two model runs with and without EEP reveals increase of reactive nitrogen by about 2 ppbv in the middle stratosphere over the tropical and middle latitudes. In the upper stratosphere over the polar winter regions the simulated NO y enhancement reaches 10 ppbv. Decreases of the ozone mixing ratio in the stratosphere by up to 5% over midlatitudes and up to 30% over southern high-latitudes are calculated. A $0.5 K cooling in the middle stratosphere over the tropics and up to 2 K over southern high-latitudes is calculated with detectable changes in the surface air temperatures. These results confirm that the magnitude of the atmospheric response to EEP events can potentially exceed the effects from solar UV fluxes. These mechanisms work in phase outside polar latitudes, but can compensate each other within polar latitudes. Citation: Rozanov, E., L. Callis, M. Schlesinger, F. Yang, N. Andronova, and V. Zubov (2005), Atmospheric response to NO y source due to energetic electron precipitation, Geophys. Res. Lett., 32, L14811,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.