Aims. Various scenarios have been proposed to explain the presence of silicate features associated with carbon stars, such as V778 Cyg. We have attempted to constrain these theories by means of mapping water maser emission from V778 Cyg. Methods. The 22 GHz water maser emission from this star has been mapped using MERLIN with an astrometric accuracy of 25 mas.Results. The spatially-and kinematically-resolved maser complex is displaced by ∼190 mas from the position of the C-star as measured 10 years earlier using Tycho. Our simulations and analysis of available data show that this position difference is unlikely to be due to proper motion if V778 Cyg is at the assumed distance of 1.4 kpc. The maser components seem to form a distorted Sshaped structure extended over ∼18 mas with a clear velocity gradient. We propose a model which explains the observed water maser structure as an O-rich warped disk around a companion of the C-star in V 778 Cyg binary system, which is seen almost edge-on. Conclusions. Analysis of observational data, especially those obtained with MERLIN, suggests that V778 Cyg (and, by implication, other silicate carbon stars) are binary systems composed of a C-rich star and a companion which stores circumstellar O-rich material.
a b s t r a c tA high-order scheme for direct numerical simulations of turbulent combustion is discussed. Its implementation in the massively parallel and publicly available PENCIL CODE is validated with the focus on hydrogen combustion. This is the first open source DNS code with detailed chemistry available. An attempt has been made to present, for the first time, the full set of evolution and auxiliary equations required for a complete description of single phase non-isothermal fluid dynamics with detailed chemical reactions. Ignition delay times (0D) and laminar flame velocities (1D) are calculated and compared with results from the commercially available Chemkin code. The scheme is verified to be fifth order in space. Upon doubling the resolution, a 32-fold increase in the accuracy of the flame front is demonstrated. Finally, also turbulent and spherical flame front velocities are calculated and the implementation of the non-reflecting so-called Navier-Stokes Characteristic Boundary Condition is validated in all three directions.
Direct numerical simulations and mean-field theory are used to model reactive front propagation in a turbulent medium. In the mean-field approach, memory effects of turbulent diffusion are taken into account to estimate the front speed in cases in which the Damköhler number is large. This effect is found to saturate the front speed to values comparable with the speed of the turbulent motions. By comparing with direct numerical simulations, it is found that the effective correlation time is much shorter than for nonreacting flows. The nonlinearity of the reaction term is found to make the front speed slightly faster.
Abstract. We study in detail a pumping mechanism for the λ = 1.35 cm maser transition 6 16 → 5 23 in ortho-H 2 O based on the difference between gas and dust temperatures. The upper maser level is populated radiatively through 4 14 → 5 05 and 5 05 → 6 16 transitions. The heat sink is realized by absorbing the 45 µm photons, corresponding to the 5 23 → 4 14 transition, by cold dust. We compute the inversion of maser level populations in the optically thick medium as a function of the hydrogen concentration, the water-to-dust mass ratio, and the difference between the gas and the dust temperatures. The main results of the numerical simulations are interpreted in terms of a simplified four-level model. We show that the maser strength depends mostly on the product of hydrogen concentration and the dust-to-water mass ratio but not on the size distribution of the dust particles or their type. We also suggest approximate formulae that describe accurately the inversion and can be used for fast calculations of the maser luminosity. Depending on the gas temperature, the maximum maser luminosity is reached when the water concentration N H 2 O ≈ 10 6 −10 7 cm −3 times the dust-to-hydrogen mass ratio, and the inversion completely disappears at densities just an order of magnitude larger. For a dust temperature of 130 K, the 6 16 → 5 23 transition becomes inverted already at a temperature difference of ∆T ∼ 1 K, while other possible masing transitions require a larger ∆T > ∼ 30 K. We identify the region of the parameter space where other ortho-and para-water masing transitions can appear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.