Introduction To compare fracture prevalence in oligo-amenorrheic athletes (AA), eumenorrheic athletes (EA), and non-athletes (NA) and determine relationships with bone density, structure and strength estimates. Methods 175 females (100 AA, 35 EA, and 40 NA) 14–25 yo were studied. Lifetime fracture history was obtained through participant interviews. Areal BMD was assessed by DXA at the spine, hip and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. Results AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (p≤0.001). BMD Z-scores were lower in AA vs. EA at the total hip, femoral neck, spine, and whole body (p≤0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%, p≤0.001), largely driven by stress fractures in AA vs. EA and NA (32% vs. 5.9% vs. 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, vBMD of outer trabecular region in radius and tibia, and trabecular thickness of the radius (p≤0.05). In AA, those who had 2 stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness and failure load at radius; and lower stiffness and failure load at tibia versus those with <2 stress fracture (p≤0.05). Conclusion Weight-bearing athletic activity increases BMD, but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes.
The hypothalamic-pituitary-gonadal (HPG) axis is essential for adequate responses to exercise and training both acutely and chronically. Both testosterone and estrogen play leading roles in neuromuscular adaptation to exercise in males and females. The purpose of this chapter is to illustrate the physiological and pathological changes that occur in the HPG axis secondary to exercise and training. In males, testosterone increases with acute bouts of exercise, but long-term effects are less clear, with evidence of lower testosterone in endurance athletes. Restricted energy availability may negatively affect hormone levels in male endurance athletes, but data regarding low energy availability and its impact on the HPG axis are limited in male athletes. Conversely, in females there is significant evidence that decreased energy availability inhibits the HPG axis, leading to menstrual irregularities and lower bone density. Hormonal changes secondary to acute bouts of exercise are more challenging to interpret in females due to menstrual variability, which traditionally has not been taken into account in many studies. However, some evidence supports an increase in testosterone and estradiol with acute exercise. More work is needed to elucidate the relationships among energy availability, basal hormonal fluctuations, and exercise, and their collective effects on the HPG axis.
Context Young amenorrheic athletes (AA) have lower bonemineral density (BMD) and an increased prevalence of fracture compared with eumenorrheic athletes (EA) and non-athletes. Trabecular morphology is a determinant of skeletal strength and may contribute to fracture risk. Objectives To determine the variation in trabecular morphology among AA, EA, and non-athletes and to determine the association of trabecular morphology with fracture among AA. Design and setting A cross-sectional study performed at an academic clinical research center. Participants 161 girls and young women aged 14–26 years (97 AA, 32 EA, and 32 non-athletes). Main outcome measure We measured volumetric BMD (vBMD) and skeletal microarchitecture using high-resolution peripheral quantitative computed tomography. We evaluated trabecular morphology (plate-like vs. rod-like), orientation, and connectivity by individual trabecula segmentation. Results At the non-weight-bearing distal radius, the groups did not differ for trabecular vBMD. However, plate-like trabecular bone volume fraction (pBV/TV) was lower in AA vs. EA (p = 0.03), as were plate number (p = 0.03) and connectivity (p = 0.03). At the weight-bearing distal tibia, trabecular vBMD was higher in athletes vs. non-athletes (p=0.05 for AA and p=0.009 for EA vs. non-athletes, respectively). pBV/TV was higher in athletes vs. non-athletes (p=0.04 AA and p=0.005 EA vs. non-athletes), as were axially-aligned trabeculae, plate number, and connectivity. Among AA, those with a history of recurrent stress fracture had lower pBV/TV, axially-aligned trabeculae, plate number, plate thickness, and connectivity at the distal radius. Conclusions Trabecular morphology and alignment differ among AA, EA, and non-athletes. These differences may be associated with increased fracture risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.