Histological examination achieves sub-micrometer resolution laterally. In the third dimension, however, resolution is limited to section thickness. In addition, histological sectioning and mounting sections on glass slides introduce tissue-dependent stress and strain. In contrast, state-of-the-art hard X-ray micro computed tomography (μCT) systems provide isotropic sub-micrometer resolution and avoid sectioning artefacts. The drawback of μCT in the absorption contrast mode for visualising physically soft tissue is a low attenuation difference between anatomical features. In this communication, we demonstrate that formalin-fixed paraffin-embedded human cerebellum yields appropriate absorption contrast in laboratory-based μCT data, comparable to conventional histological sections. Purkinje cells, for example, are readily visible. In order to investigate the pros and cons of complementary approaches, two- and three-dimensional data were manually and automatically registered. The joint histogram of histology and the related μCT slice allows for a detailed discussion on how to integrate two-dimensional information from histology into a three-dimensional tomography dataset. This methodology is not only rewarding for the analysis of the human cerebellum, but it also has relevance for investigations of tissue biopsies and post-mortem applications. Our data indicate that laboratory-based μCT as a modality can fill the gap between synchrotron radiation-based μCT and histology for a variety of tissues. As the information from haematoxylin and eosin (H&E) stained sections and μCT data is related, one can colourise local X-ray absorption values according to the H&E stain. Hence, μCT data can correlate and virtually extend two-dimensional (2D) histology data into the third dimension.
Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.
Pre-clinical animal models are commonly used to evaluate the osteogenic potential of bone grafting materials in-vivo. Based on the histology analysis, the currently commercially available bone grafting materials show comparable results with respect to biocompatibility, incorporation and remodeling. In the present pilot study we introduce a methodology to compare calcium phosphate-based bone grafting materials from world-leading companies in clinical trials and analyze them by means of established histology and synchrotron radiation-based micro computed tomography (SRμCT). The results indicate that the morphology of the bony structures depends on the selected bone grafting material and that an arbitrarily selected histological slice can lead to misleading conclusions. Complementary μCT data can become the basis for the identification of a representative slice. The registration of the selected histological slice with its counterpart in the three-dimensional μCT dataset was performed both visually and automatically with well comparable results. This registration allows for the compilation of a joint histogram to identify anatomical features, which can neither be extracted from histology nor from μCT data on their own. Accordingly, μCT will become an integral part of studies on the efficacy of bone augmentation materials and beyond.
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.