BackgroundArgentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated.ResultsThe analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation.ConclusionThe present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent estimations of genetic diversity and population structure in sunflower breeding materials. The generated knowledge about the levels of diversity and population structure of sunflower germplasm is an important contribution to this crop breeding and conservation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0360-x) contains supplementary material, which is available to authorized users.
Restriction site-associated DNA sequencing (RADseq) and its derived protocols, such as double digest RADseq (ddRADseq), offer a flexible and highly cost-effective strategy for efficient plant genome sampling. This has become one of the most popular genotyping approaches for breeding, conservation, and evolution studies in model and non-model plant species. However, universal protocols do not always adapt well to non-model species. Herein, this study reports the development of an optimized and detailed ddRADseq protocol in Eucalyptus dunnii, a non-model species, which combines different aspects of published methodologies. The initial protocol was established using only two samples by selecting the best combination of enzymes and through optimal size selection and simplifying lab procedures. Both single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) were determined with high accuracy after applying stringent bioinformatics settings and quality filters, with and without a reference genome. To scale it up to 24 samples, we added barcoded adapters. We also applied automatic size selection, and therefore obtained an optimal number of loci, the expected SNP locus density, and genome-wide distribution. Reliability and cross-sequencing platform compatibility were verified through dissimilarity coefficients of 0.05 between replicates. To our knowledge, this optimized ddRADseq protocol will allow users to go from the DNA sample to genotyping data in a highly accessible and reproducible way.
Sunflower germplasm collections are valuable resources for broadening the genetic base of commercial hybrids and ameliorate the risk of climate events. Nowadays, the most studied worldwide sunflower pre-breeding collections belong to INTA (Argentina), INRA (France), and USDA-UBC (United States of America–Canada). In this work, we assess the amount and distribution of genetic diversity (GD) available within and between these collections to estimate the distribution pattern of global diversity. A mixed genotyping strategy was implemented, by combining proprietary genotyping-by-sequencing data with public whole-genome-sequencing data, to generate an integrative 11,834-common single nucleotide polymorphism matrix including the three breeding collections. In general, the GD estimates obtained were moderate. An analysis of molecular variance provided evidence of population structure between breeding collections. However, the optimal number of subpopulations, studied via discriminant analysis of principal components (K = 12), the bayesian STRUCTURE algorithm (K = 6) and distance-based methods (K = 9) remains unclear, since no single unifying characteristic is apparent for any of the inferred groups. Different overall patterns of linkage disequilibrium (LD) were observed across chromosomes, with Chr10, Chr17, Chr5, and Chr2 showing the highest LD. This work represents the largest and most comprehensive inter-breeding collection analysis of genomic diversity for cultivated sunflower conducted to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.