Background Several studies have highlighted the role of host–microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). Methods Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. Results Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. Conclusions Our analyses highlighted how IBD-related dysbiotic microbiota—which are generally mainly linked to SCFA imbalance—may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.
The results of recent studies indicate a significant role of gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD). The aim of the study was to study the taxonomic and functional composition of the gut microbiota in ulcerative colitis (UC) and Crohn's disease (CD) patients to identify key markers of dysbiosis in IBD. Materials and methods. Fecal samples obtained from 95 IBD patients (78 UC and 17 CD) as well as 96 healthy volunteers were used for whole-genome sequencing carried out on the SOLiD 5500 W platform. Taxonomic profiling was performed by aligning the reeds, not maped on hg19, on MetaPhlAn2 reference database. Reeds were mapped using the HUNAnN2 algorithm to the ChocoPhlAn database to assess the representation of microbial metabolic pathways. Short-chain fatty acids (SCFA) level were measured in fecal samples by gas-liquid chromatographic analysis. Results and discussion. Changes in IBD patients gut microbiota were characterized by an increase in the representation of Proteobacteria and Bacteroidetes phyla bacteria and decrease in the number of Firmicutes phylum bacteria and Euryarchaeota phylum archaea; a decrease in the alpha-diversity index, relative representation of butyrate-producing, hydrogen-utilizing bacteria, and Methanobrevibacter smithii; increase in the relative representation of Ruminococcus gnavus in UC and CD patients and Akkermansia muciniphila in CD patients. Reduction of Butyryl-CoA: acetate CoA transferase gene relative representation in CD patients, decrease of absolute content of SCFA total number as well as particular SCFAs and main SCFAs ratio in IBD patients may indicate inhibition of functional activity and number of anaerobic microflora and/or an change in SCFA utilization by colonocytes. Conclusion: the revealed changes can be considered as typical signs of dysbiosis in IBD patients and can be used as potential targets for IBD patients personalized treatment development.
Crystalline Ni2B, Ni3B, and Ni4B3 are synthesized by a single-step method using autogenous pressure from the reaction of NaBH4 and Ni precursors. The effect of reaction temperature, pressure, time, and starting materials on the composition of synthesized products, particle morphologies, and magnetic properties is demonstrated. High yields of Ni2B (>98%) are achieved at 2.3–3.4 MPa and ~670 °C over five hours. Crystalline Ni3B or Ni4B3 form in conjunction with Ni2B at higher temperature or higher autogenous pressure in proportions influenced by the ratios of initial reactants. For the same starting ratios of reactants, a longer reaction time or higher pressure shifts equilibria to lower yields of Ni2B. Using this approach, yields of ~88% Ni4B3 (single phase orthorhombic) and ~72% Ni3B are obtained for conditions 1.9 MPa < Pmax < 4.9 MPa and 670 °C < Tmax < 725 °C. Gas-solid reaction is the dominant transformation mechanism that results in formation of Ni2B at lower temperatures than conventional solid-state methods.
Background: Antibiotics are widely used to treat animals from infections. After fertilizing, antibacterials can remain in the soil while adversely affecting the soil microorganisms. The concentration of oxytetracycline (OTC) in the soil and its effect on the soil microbial community was assessed. To assess the impact of OTC on the soil microbial community, it was added to the soil at concentrations of 50, 150, and 300 mg kg-1 and incubated for 35 days. Results: The concentration of OTC added to the soil decreased from 150 to 7.6 mg kg-1 during 30 days of incubation, as revealed by LC-MS. The deviations from the control values in the level of substrate-induced respiration on the 5th day of the experiment were, on average, 26, 68, and 90%, with OTC concentrations at 50, 150, and 300 mg kg-1 , respectively. In samples with 150 and 300 mg kg-1 of OTC, the number of bacteria from the 3rd to 14th day was 2-3 orders of magnitude lower than in the control. The addition of OTC did not affect the fungal counts in samples except on the 7th and 14th days for the 150 and 300 mg kg-1 contaminated samples. Genes tet(M) and tet(X) were found in samples containing 50, 150, and 300 mg kg-1 OTC, with no significant differences in the number of copies of tet(M) and tet(X) genes from the OTC concentration. Conclusions: Our results showed that even after a decrease in antibiotic availability, its influence on the soil microbial community remains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.