Background:Whether methylation of the microRNA (mir)-124-3 CpG island is of relevance for the clinical course of a solid cancer and whether it shows association with clinicopathology or survival of patients with renal cell cancer (RCC) is not known as yet.Methods:In a cross-sectional study, relative methylation of mir-124-3 was measured in 111 RCC samples and 77 paired normal appearing tissues using quantitative methyl-specific PCR. Results were statistically compared with tumour histology, clinicopathological parameters and disease recurrence.Results:We found tumour-specific hypermethylation of mir-124-3 in samples of RCCs with clear cell histology (ccRCC) compared with paired normal appearing tissues (P<0.0001). Methylation was significantly increased in tumours with state of advanced disease (P<0.0001). Higher relative methylation was associated with worse recurrence-free survival in both univariate (hazard ratio=9.37; P=0.0005) as well as bivariate Cox regression analyses considering age, sex, diameter of tumours and state of advanced disease, metastasis and lymph node metastases as covariates (hazard ratios=5.9–18.2; P-values of 0.0003–0.008).Conclusion:We identified mir-124-3 CpG islands (CGI) methylation as a relevant epigenetic mark for ccRCC thus underlining the need for functional studies of potentially affected signalling pathways in kidney tumour models. Methylation of mir-124-3 is suggested as an independent prognosticator for ccRCC.
Bloom's syndrome is a rare autosomal recessive chromosomal instability disorder with a high incidence of various types of neoplasia, including breast cancer. Whether monoallelic BLM mutations predispose to breast cancer has been a long-standing question. A nonsense mutation, p.Q548X, has recently been associated with an increased risk for breast cancer in a Russian case-control study. In the present work, we have investigated the prevalence of this Slavic BLM founder mutation in a total of 3,188 breast cancer cases and 2,458 controls from Bashkortostan, Belarus, Ukraine, and Kazakhstan. The p.Q548X allele was most frequent in Russian patients (0.8 %) but was also prevalent in Byelorussian and Ukrainian patients (0.5 and 0.6 %, respectively), whereas it was absent in Altaic or other non-European subpopulations. In a combined analysis of our four case-control series, the p.Q548X mutation was significantly associated with breast cancer (Mantel-Haenszel OR 5.1, 95 % CI 1.2; 21.9, p = 0.03). A meta-analysis with the previous study from the St. Petersburg area corroborates the association (OR 5.7, 95 % CI 2.0; 15.9, p = 3.7 × 10(-4)). A meta-analysis for all published truncating mutations further supports the association of BLM with breast cancer, with an estimated two- to five-fold increase in risk (OR 3.3, 95 %CI 1.9; 5.6, p = 1.9 × 10(-5)). Altogether, these data indicate that BLM is not only a gene for Bloom's syndrome but also might represent a breast cancer susceptibility gene.
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren’s syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Background The XRCC2 gene is a key mediator in the homologous recombination repair of DNA double strand breaks. We hypothesised that inherited variants in the XRCC2 gene might also affect susceptibility to, and survival from, breast cancer. Methods We genotyped 12 XRCC2 tagging SNPs in 1,131 breast cancer cases and 1,148 controls from the Sheffield Breast Cancer Study (SBCS), and examined their associations with breast cancer risk and survival by estimating odds ratios (ORs) and hazard ratios (HRs), and their corresponding 95% confidence intervals (CIs). Positive findings were further investigated in 860 cases and 869 controls from the Utah Breast Cancer Study (UBCS) and jointly analysed together with available published data for breast cancer risk. The survival findings were further confirmed in studies (8,074 cases) from the Breast Cancer Association Consortium (BCAC). Results The most significant association with breast cancer risk in the SBCS dataset was the XRCC2 rs3218408 SNP (recessive model p=2.3×10−4, MAF=0.23). This SNP yielded an ORrec (95% CI) of 1.64 (1.25–2.16) in a two-site analysis of SBCS and UBCS, and a meta-ORrec (95% CI) of 1.33 (1.12–1.57) when all published data were included. This SNP may mark a rare risk haplotype carried by 2 in 1000 of the control population. Furthermore, the XRCC2 coding R188H SNP (rs3218536, MAF=0.08) was significantly associated with poor survival, with an increased per-allele HR (95% CI) of 1.58 (1.01–2.49) in a multivariate analysis. This effect was still evident in a pooled meta-analysis of 8,781 breast cancer patients from the BCAC [HR (95% CI) of 1.19 (1.05–1.36), p=0.01]. Conclusions Our findings suggest that XRCC2 SNPs may influence breast cancer risk and survival.
BackgroundP.I157T is a CHEK2 missense mutation associated with a modest increase in breast cancer risk. Previously, another CHEK2 mutation, the protein truncating c.1100delC has been associated with poor prognosis of breast cancer patients. Here, we have investigated patient survival and characteristics of breast tumors of germ line p.I157T carriers.MethodsWe included in the analyses 26,801 European female breast cancer patients from 15 studies participating in the Breast Cancer Association Consortium. We analyzed the association between p.I157T and the clinico-pathological breast cancer characteristics by comparing the p.I157T carrier tumors to non-carrier and c.1100delC carrier tumors. Similarly, we investigated the p.I157T associated risk of early death, breast cancer-associated death, distant metastasis, locoregional relapse and second breast cancer using Cox proportional hazards models.Additionally, we explored the p.I157T-associated genomic gene expression profile using data from breast tumors of 183 Finnish female breast cancer patients (ten p.I157T carriers) (GEO: GSE24450). Differential gene expression analysis was performed using a moderated t test. Functional enrichment was investigated using the DAVID functional annotation tool and gene set enrichment analysis (GSEA). The tumors were classified into molecular subtypes according to the St Gallen 2013 criteria and the PAM50 gene expression signature.ResultsP.I157T was not associated with increased risk of early death, breast cancer-associated death or distant metastasis relapse, and there was a significant difference in prognosis associated with the two CHEK2 mutations, p.I157T and c.1100delC. Furthermore, p.I157T was associated with lobular histological type and clinico-pathological markers of good prognosis, such as ER and PR expression, low TP53 expression and low grade. Gene expression analysis suggested luminal A to be the most common subtype for p.I157T carriers and CDH1 (cadherin 1) target genes to be significantly enriched among genes, whose expression differed between p.I157T and non-carrier tumors.ConclusionsOur analyses suggest that there are fundamental differences in breast tumors of CHEK2:p.I157T and c.1100delC carriers. The poor prognosis associated with c.1100delC cannot be generalized to other CHEK2 mutations.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-016-0758-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.