High fructose intake induces an insulin resistance state associated with metabolic syndrome (MS). The effect of vascular inflammation in this model is not completely addressed. The aim of this study was to evaluate vascular remodeling, inflammatory and oxidative stress markers, and atheroma development in high-fructose diet-induced insulin resistance of ApoE-deficient mice (ApoE-KO).
Mice were fed with either a normal chow or a 10% w/v fructose (HF) in drinking water over a period of 8 weeks. Thereafter, plasma metabolic parameters, vascular remodeling, atheroma lesion size, inflammatory markers, and NAD(P)H oxidase activity in the arteries were determined. HF diet induced a marked increase in plasma glucose, insulin, and triglycerides in ApoE-KO mice, provoked vascular remodeling, enhanced expression of vascular cell-adhesion molecule-1 (VCAM-1) and matrix metalloprotease 9 (MMP-9) and enlarged atherosclerotic lesion in aortic and carotid arteries. NAD(P)H oxidase activity was enhanced by fructose intake, and this effect was attenuated by tempol, a superoxide dismutase mimetic, and losartan, an Angiotensin II receptor antagonist. Our study results show that high-fructose-induced insulin resistance promotes a proinflammatory and prooxidant state which accelerates atherosclerotic plaque formation in ApoE-KO mice.
Dietary flavonoids, present in different amount in foods, are associated with the prevention of hypertension, but little is known about the interactions between them. The aim of this study was to explore the effect of quercetin (Q), catechin (C) and the mixture, on Angiotensin II (AngII)-induced redox-dependent signalling pathways and cell behaviour. Mesenteric smooth muscle cells (MesSMC) from spontaneously hypertensive rats (SHR) were incubated with AngII (0.1 μmol/L) alone, or with the mixture of low concentrations of Q and C. AngII-increased ROS production was reduced by the mixture of separately ineffective low concentration of Q (15 μmol/L) plus C (20 μmol/L). This mixture reduced AngII-stimulated NAD(P)H oxidase activation and p47phox translocation to the cell membrane, without affecting Nox2 expression. Co-incubation of Q + C significantly inhibited AngII-induced migration and proliferation, and these effects were independent of p-ERK1/2 and related with reduced p38MAPK phosphorylation. These findings demonstrated that low concentrations of singly non-effective flavonoids when are combined exert a synergistic effect in inhibiting AngII-induced redox-sensitive signalling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.