Although the desirability of developing synthetic molecular machine systems that can function on surfaces is widely recognized, to date the only well-characterized examples of electrochemically switchable rotaxane-based molecular shuttles which can do so are based on the tetracationic viologen macrocycle pioneered by Stoddart. Here, we report on a [2]rotaxane which features succinamide and naphthalene diimide hydrogen-bonding stations for a benzylic amide macrocycle that can shuttle and switch its net position both in solution and in a monolayer. Three oxidation states of the naphthalene diimide unit can be accessed electrochemically in solution, each one with a different binding affinity for the macrocycle and, hence, corresponding to a different distribution of the rings between the two stations in the molecular shuttle. Cyclic voltammetry experiments show the switching to be both reversible and cyclable and allow quantification of the translational isomer ratios (thermodynamics) and shuttling dynamics (kinetics) for their interconversion in each state. Overall, the binding affinity of the naphthalene diimide station can be changed by 6 orders of magnitude over the three states. Unlike previous electrochemically active amide-based molecular shuttles, the reduction potential of the naphthalene diimide unit is sufficiently positive (-0.68 V) for the process to be compatible with operation in self-assembled monolayers on gold. Incorporating pyridine units into the macrocycle allowed attachment of the shuttles to an acid-terminated self-assembled monolayer of alkane thiols on gold. The molecular shuttle monolayers were characterized by X-ray photoelectron spectroscopy and their electrochemical behavior probed by electrochemical impedance spectroscopy and double-potential step chronoamperometry, which demonstrated that the redox-switched shuttling was maintained in this environment, occurring on the millisecond time scale.
The crystal structure of 2-butylamino-6-methyl-4-nitropyridine N-oxide (2B6M) was resolved on the basis of X-ray diffraction. Solid 2B6M occurs in the form of a doubly hydrogen-bonded dimer with squarelike hydrogen-bonding network composed of two intra- (2.556(2) A) and two intermolecular (2.891(2) A) N-H...O type hydrogen bonds. The molecule thus has both a protonable and a deprotonable group that led us to investigate the possibility of an excited-state proton transfer (ESIPT) reaction in different solvents by means of experimental absorption, steady state, and time-resolved emission spectroscopy. The results were correlated with quantum mechanical TD-DFT and PM3 calculations. Experimental and theoretical findings show the possibility of an ESIPT reaction in polar solvents. It is demonstrated that in particular the emission spectra of 2B6M are very sensitive to solvent properties, and a large value of the Stokes shift (about 8000 cm(-1)) in acetonitrile is indicative for an ESIPT process. This conclusion is further supported by time-resolved fluorescence decay measurents that show dual exponential decay in polar solvents. Vertical excitation energies calculated by TD-DFT reproduce the experimental absorption maxima in nonpolar solvents well. The majority of electronic transitions in 2B6M is of pi --> pi* character with a charge shift from the electron-donating to the electron-accepting groups. The calculations show that, due to the charge redistribution on excitation, the acidity of the amino group increases significantly, which facilitates the proton transfer from the amino to the N-oxide group in the excited state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.