The agronomic and physiological traits, drought tolerance indexes, principal component analysis and Ward`s method were applied to assess the differences among 20 wheat genotypes in response to drought. Statistically significant correlation was observed for measured traits. Drought susceptibility index (DSI), stress tolerance index (STI) and stress index (SI) were most useful to identify genotypes differing in their response to drought. Utility of the indexes was confirmed by physiological markers of drought tolerance i.e. membrane injury and leaf water status. Variation of the genotypes in biomass and grain yield during drought stress was also verified by clustering methods. Finally, integration of physiological and statistical methods presented in this work, allows to both, indicate that tolerance to drought in wheat has a common genetic background, and select the most diverse genotypes. Based on the results, we recommend a tool for breeders, useful to select the genotypes resistant and sensitive to drought.
(1) Background: The study analyzed wheat morphological traits to assess the role of roots structure in the tolerance of drought and to recognize the mechanisms of root structure adjustment to dry soil environment. (2) Methods: Root-box and root-basket methods were applied to maintain an intact root system for analysis. (3) Results: Phenotypic differences among six genotypes with variable drought susceptibility index were found. Under drought, the resistant genotypes lowered their shoot-to-root ratio. Dry matter, number, length, and diameter of nodal and lateral roots were higher in drought-tolerant genotypes than in sensitive ones. The differences in the surface area of the roots were greater in the upper parts of the root system (in the soil layer between 0 and 15 cm) and resulted from the growth of roots of the tolerant plant at an angle of 0–30° and 30–60°. (4) Conclusions: Regulation of root bending in a more downward direction can be important but is not a priority in avoiding drought effects by tolerant plants. If this trait is reduced and accompanied by restricted root development in the upper part of the soil, it becomes a critical factor promoting plant sensitivity to water-limiting conditions.
We have calculated that with the world population projected to increase from 7.5 billion in 2017 to 9.8 in 2050, the next generation (within 33 years) will produce 12,000–13,000 Mt of plastic, and that the yearly consumption will reach 37–40 kilos of plastic per person worldwide. One of the branches of the plastics industry is the production of plastics for agriculture e.g., seed trays and pots. In this paper, novel metakaolin-based geopolymer composites reinforced with cellulosic fibres are presented as an alternative to plastic pots. Materials can be dedicated to agricultural applications, provided they have neutral properties, however, geopolymer paste and its final products have high pH. Therefore, a two-step protocol of neutralisation of the geopolymer foam pots was optimised and implemented. The strength of the geopolymer samples was lower when foams were neutralised. The reinforcement of geopolymers with cellulose clearly prevented the reduction of mechanical properties after neutralisation, which was correlated with the lower volume of pores in the foam and with the cellulose chemical properties. Both, neutralisation and reinforcement with cellulose can also eliminate an efflorescence. Significantly increased plant growth was found in geopolymer pots in comparison to plastic pots. The cellulose in geopolymers resulted in better adsorption and slower desorption of minerals during fertilisation. This effect could also be associated with a lower number of large pores in the presence of cellulose fibres in pots, and thus more stable pore filling and better protection of internal surface interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.