In this article, we simulated the collisions of an OH• projectile impacting on a methanol cluster formed by ten units of methanol to mimic an ice mantle (CH3OH)10. The chemical processes occurring after the impact were studied through Born-Oppenheimer (ab-initio) molecular dynamics. We focus on collisions with initial kinetic impact energy of 10–22 eV, where the richest chemistry happens. We report the formation mechanisms of stable complex organic molecules (COMs) such as methoxymethanol CH3OCH2OH, formic acid HCOOH, formyl radical HCO, formaldehyde H2CO and its elusive HCOH isomer. We show that CH2(OH)2, •CH2OH or +CH2OH are key intermediates to generate H2CO and other COMs. We compare the outcomes using OH• with those using OH− projectiles. These processes are likely relevant to the production of COMs in astrophysical environments. We discuss its formation mechanism and the astrophysical implications of these chemical pathways in star-forming regions.
Context. Formaldehyde H2CO was the first organic polyatomic molecule discovered in the interstellar medium to have been detected in a variety of sources. However, pathways to synthesize this molecule under interstellar conditions have yet to be discussed.
Aims. We carried out a systematic study to analyze the chemical processes that can explain the H2CO formation mechanism toward a decamer of methanol (CH3OH)10 as target material to mimic an ice mantle bombarded by an OH+ cation.
Methods. We performed Born-Oppenheimer (ab initio) molecular dynamics simulations to obtain the formation mechanisms of complex organic molecules (COMs) such as formaldehyde H2CO and its HCOH isomer.
Results. We found that CH2OH+ and CH2(OH)2 are the main precursors to form H2CO and HCOH. We discuss its formation mechanisms and the astrophysical implications in star-forming regions. These processes are likely relevant to the production of COMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.