Ionic liquids (ILs), such as imidazoles, can be used to prevent the sorption of analytes onto the walls of the capillary. Prior works have confirmed that coating the capillary wall with a cationic layer can increase its surface stability, thereby improving the repeatability of the separation process. In this study, micellar electrokinetic chromatography (MEKC) is employed to evaluate how two ILs with different anions—namely, 1-hexyl-3-methylimidazolium chloride [HMIM+Cl−] and 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM+BF4−]—affect the separation efficiency for biogenic amines (BAs) such as metanephrine (M), normetanephrine (NM), vanilmandelic acid (VMA), and homovanillic acid (HVA) in urine samples. To this end, solid-phase extraction (SPE) is employed using different sample pH values, with the results demonstrating that HVA and VMA is easily extracted at a sample pH of 5.5, while a sample pH of 9.0 facilitated the extraction of M and NM. In the applied SPE protocol, selected analytes were isolated from urine samples using hydrophilic–lipophilic-balanced (HLB) columns and eluted with methanol (MeOH). The validation data confirmed the method’s linearity (R2 > 0.996) for all analytes within the range of 0.25–10 µg/mL. The applicability of the optimized SPE-MEKC-UV method was confirmed by employing it to quantify clinically relevant BAs in real urine samples from pediatric neuroblastoma (NBL) patients.
In recent years, off-label use of sirolimus (SIR) has been gaining attention in the clinical practice. However, since it is critical to achieve and maintain therapeutic blood levels of SIR during treatment, the regular monitoring of this drug in individual patients must be implemented, especially in off-label indications of this drug. In this article, a fast, simple, and reliable analytical method for determining SIR levels in whole blood samples is proposed. Sample preparation based on dispersive liquid–liquid microextraction (DLLME) followed by liquid chromatography-mass spectrometry (LC-MS/MS) was fully optimized toward the analysis of SIR and proposed as a fast, simple, and reliable analytical method for determining the pharmacokinetic profile of SIR in whole-blood samples. In addition, the practical applicability of the proposed DLLME-LC-MS/MS method was evaluated by analyzing the pharmacokinetic profile of SIR in whole blood samples obtained from two pediatric patients suffering from lymphatic anomalies, receiving this drug as off-label clinical indication. The proposed methodology can be successfully applied in routine clinical practice for the fast and precise assessment of SIR levels in biological samples, thus allowing SIR dosages to be adjusted in real time during pharmacotherapy. Moreover, the measured SIR levels in the patients indicate the need for monitoring between doses to ensure the optimal pharmacotherapy of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.