The aim of the study was to assess the effectiveness of microwave pretreatment combined with acid catalysis in the decomposition of various types of biomass (pine and beech chips and hemp stems). It was clearly demonstrated that sulfuric acid was a catalyst enabling the most effective decomposition of the tested plant biomass, guaranteeing the highest concentrations of simple sugars released. Acid catalysis with 1% v/v sulfuric acid combined with microwave radiation provided high glucose concentrations of 89.8 ± 3.4, 170.4 ± 2.4 and 164.6 ± 4.6 mg/g for pine chips, beech chips and hemp stems, respectively. In turn, the use of nitric acid promoted the degradation of hemicellulose, which resulted in high concentrations of galactose and xylose, i.e., 147.6 ± 0.6, 163.6 ± 0.4 and 134.9 ± 0.8 mg/g of pine chips, beech chips and hemp stems, respectively, while glucose levels remained relatively low. It was also demonstrated that the undesirable dehydration of sugars such as glucose and xylose is more pronounced in sulfuric acid than nitric acid processes. The use of H2SO4 and increased pressure generated 5-hydroxymethylfurfural (5-HMF) and furfural at a concentration of ca. 12 and 6 mg/g, 10 and 45 mg/g and 14 and 30 mg/g, of pine chips, beech chips and hemp shoots, respectively. Our studies confirmed the usefulness of the combined use of microwaves and acid catalysis in the degradation of softwood, hardwood and non-wood plant biomass. It should be emphasized that obtaining high concentrations of released simple sugars (as potential substrates in biosynthesis), while maintaining low levels of toxic by-products (inhibitors), requires precise selection of process parameters such as pressure, exposition time and type of acid catalyst.
A new method for fabrication of hybrid ceramic-polymer structures with diversified geometry of microchannel was elaborated. This method is universal, non-complicated, and utilises commercially available materials and basic equipment for thick film technology and photolithography. A microchip for capillary electrophoresis was prepared as an example of microfluidic structure fabrication. The chip was prepared by using a photosensitive paste (dielectric FODEL 6050) which was screen printed onto a ceramic substrate, exposed through an appropriate mask, developed, fired and then glazed. In this way, we obtained the structure which can be bonded with poly(dimethylsiloxane) PDMS after oxygen plasma treatment. The application of transparent PDMS as a seal of the microchannel enabled the optical detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.