Determination of the cause of a biliary obstruction is often inconclusive from serum analysis alone without further clinical tests. To this end, serum markers as well as the composition of bile of 74 patients with biliary obstructions were determined to improve the diagnoses. The samples were collected from the patients during an endoscopic retrograde cholangiopancreatography (ERCP). The concentration of eight bile salts, specifically sodium cholate, sodium glycocholate, sodium taurocholate, sodium glycodeoxycholate, sodium chenodeoxycholate, sodium glycochenodeoxycholate, sodium taurodeoxycholate, and sodium taurochenodeoxycholate as well as bile cholesterol were determined by HPLC-MS. Serum alanine aminotransferase (ALT), aspartate transaminase (AST), and bilirubin were measured before the ERCP. The aim was to determine a diagnostic factor and gain insights into the influence of serum bilirubin as well as bile salts on diseases. Ratios of conjugated/unconjugated, primary/secondary, and taurine/glycine conjugated bile salts were determined to facilitate the comparison to literature data. Receiver operating characteristic (ROC) curves were determined, and the cut-off values were calculated by determining the point closest to (0,1). It was found that serum bilirubin was a good indicator of the type of biliary obstruction; it was able to differentiate between benign obstructions such as choledocholithiasis (at the concentration of >11 µmol/L) and malignant changes such as pancreatic neoplasms or cholangiocarcinoma (at the concentration of >59 µmol/L). In addition, it was shown that conjugated/unconjugated bile salts confirm the presence of an obstruction. With lower levels of conjugated/unconjugated bile salts the possibility for inflammation and, thus, neoplasms increase.
We aim to advance the discussion on the significance of the conjugation of bile salts (BS) in our organism. We hypothesize that conjugation influences the rate of lipolysis. Since the rate of lipolysis is a compound parameter, we compare the effect of conjugation on four surface parameters, which contribute to the rate. Since deconjugation is due to gut microbiota, we hypothesize that microbiota may affect the rate of lipolysis. A meta-analysis of literature data of critical micelle concentration, β, aggregation number, and molar solubilization ratio has been performed for the first time. In addition, critical micelle concentration (CMC), interfacial tension, and lipolysis rate measurements were performed. It was found that the unconjugated BS in mixed micelles increases the antagonism between the BS, therefore, increasing the CMC. This correlated with the effect of unconjugated BS on the solubilization capacity of mixed micelles. The collected literature information indicates that the role of the BS and its conjugation in our organism is a key factor influencing the functioning of our organism, where too high levels of unconjugated BS may lead to malabsorption of fat-soluble nutrients. The experimental lipolysis results irrevocably showed that conjugation is a significant factor influencing the rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.