On the value of information: studying changes in patch assessment abilities through learning. Á/ Oikos 112: 298 Á/310.Little is known about how animals acquire and use prior information, particularly for Bayesian patch assessment strategies. Because different patch assessment strategies rely upon distinct capabilities to obtain information, we analyzed whether foragers can alter their foraging strategy when they exploit predictable patches with periodic renewal. For this, we evaluated if learning contribute to increase foraging efficiency by improving patch assessment abilities in degus (Octodon degus ), a diurnal caviomorph rodent from central Chile. Single degus exploited pairs of depleting patches that were renewed daily. During the initial two days of the experiment, degus exploited patches in agreement with a fixed-time strategy, i.e. at the population level, giving-up densities (GUD) were not distinguishable from density-independence (i.e. consumption proportional to initial patch densities), and richer patches were under-exploited. After day five, degus improved significantly their assessment strategy, showing agreement with Bayesian information updating. However, on day 15 and afterwards, degus foraged patches in agreement with a prescient strategy, because GUDs across patches indicated positive density-dependence and equalization of GUDs. Although highly variable, the GUD ratio between rich and poor patches decreased significantly throughout time. Withinsubject data showed that as subjects learned patch qualities they showed a tendency toward GUD equalization and differentiation from density-independence. By the end of the experiment, degus allocated more time to richer patches during the initial period of each trial, and allocated similar amounts of time by the end of trials. Further, the first visit of a session was significantly biased toward the rich patch by the final days of the experiment. The results suggest that assessment abilities can change when exploiting novel but predictable patches. When degus can incorporate adequate environmental information, prior and current information may become accurate enough to make animals exploit patches efficiently.
SUMMARYIt has been argued that trichromatic bees with photoreceptor spectral sensitivity peaks in the ultraviolet (UV), blue and green areas of the spectrum are blind to long wavelengths (red to humans). South American temperate forests (SATF) contain a large number of human red-looking flowers that are reported to be visited by the bumblebee Bombus dahlbomii. In the present study, B. dahlbomii's spectral sensitivity was measured through electroretinogram (ERG) recordings. No extended sensitivity to long wavelengths was found in B. dahlbomii. The spectral reflectance curves from eight plant species with red flowers were measured. The color loci occupied by these flowers in the bee color space was evaluated using the receptor noise-limited model. Four of the plant species have pure red flowers with low levels of chromatic contrast but high levels of negative L-receptor contrast. Finally, training experiments were performed in order to assess the role of achromatic cues in the detection and discrimination of red targets by B. dahlbomii. The results of the training experiments suggest that the bumblebee relies on achromatic contrast provided by the L-receptor to detect and discriminate red targets. These findings are discussed in the context of the evolutionary background under which the relationship between SATF species and their flower visitors may have evolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.