Adenovirus was first identified in the 1950s and since then this pathogenic group of viruses has been explored and transformed into a genetic transfer vehicle. Modification or deletion of few genes are necessary to transform it into a conditionally or non-replicative vector, creating a versatile tool capable of transducing different tissues and inducing high levels of transgene expression. In the early years of vector development, the application in monogenic diseases faced several hurdles, including short-term gene expression and even a fatality. On the other hand, an adenoviral delivery strategy for treatment of cancer was the first approved gene therapy product. There is an increasing interest in expressing transgenes with therapeutic potential targeting the cancer hallmarks, inhibiting metastasis, inducing cancer cell death or modulating the immune system to attack the tumor cells. Replicative adenovirus as vaccines may be even older and date to a few years of its discovery, application of non-replicative adenovirus for vaccination against different microorganisms has been investigated, but only recently, it demonstrated its full potential being one of the leading vaccination tools for COVID-19. This is not a new vector nor a new technology, but the result of decades of careful and intense work in this field.
Human Papillomavirus is responsible for a wide range of mucosal lesions and tumors. The immune system participate in tumorigenesis in different ways. For example, signaling pathways triggered by Toll-like receptors (TLR) play a role in chemotherapy resistance in several tumor types and are candidates for contributing to the development of HPV-induced tumors. Here, we studied the receptor TLR4 and the adaptor molecule SARM1 in HeLa cells, an HPV-positive cervical cancer cell line. Knocking out of these genes individually proved to be important for maintaining cell viability and proliferation. TLR4 knock out cells were more sensitive to cisplatin treatment, which was illustrated by an increased frequency of apoptotic cells. Furthermore, TLR4 and SARM1 modulated ROS production, which was induced by cell death in response to cisplatin. In conclusion, TLR4 and SARM1 are important for therapy resistance and cervical cancer cell viability and may be relevant clinical targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.