Carbonic anhydrase (CA) activity of pea thylakoids, thylakoid membranes enriched with photosystem I (PSI-membranes), or photosystem II (PSII-membranes) as well as both supernatant and pellet after precipitation of thylakoids treated with detergent Triton X-100 were studied. CA activity of thylakoids in the presence of varying concentrations of Triton X-100 had two maxima, at Triton/chlorophyll (triton/Chl) ratios of 0.3 and 1.0. CA activities of PSI-membranes and PSII-membranes had only one maximum each, at Triton/Chl ratio 0.3 or 1.0, respectively. Two CAs with characteristics of the membrane-bound proteins and one CA with characteristics of the soluble proteins were found in the medium after thylakoids were incubated with Triton. One of the first two CAs had mobility in PAAG after native electrophoresis the same as that of CA residing in PSI-membranes, and the other CA had mobility the same as the mobility of CA residing in PSII-membranes, but the latter was different from CA situated in PSII core-complex (Ignatova et al. 2006 Biochemistry (Moscow) 71:525-532). The properties of the "soluble" CA removed from thylakoids were different from the properties of the known soluble CAs of plant cell: apparent molecular mass was about 262 kD and it was three orders more sensitive to the specific CA inhibitor, ethoxyzolamide, than soluble stromal CA. The data are discussed as indicating the presence of, at least, four CAs in pea thylakoids.
Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane. Fluorescent probe Amplex red, which forms fluorescent product, resorufin, in the reaction with hydrogen peroxide, has been used to detect hydrogen peroxide outside isolated chloroplasts using confocal microscopy. Resorufin fluorescence outside the chloroplasts is found to be suppressed by 60% in the presence of the inhibitor of aquaporins, acetazolamide (AZA), indicating that hydrogen peroxide can diffuse through the chloroplast envelope aquaporins. It is demonstrated that AZA also inhibits carbonic anhydrase activity of the isolated envelope. We put forward a hypothesis that carbonic anhydrase presumably can be attached to the envelope aquaporins. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
The procedure of isolating the thylakoids and the thylakoid membrane fragments enriched with either photosystem I or photosystem II (PSI- and PSII-membranes) from Arabidopsis thaliana leaves was developed. It differed from the one used with pea and spinach in durations of detergent treatment and centrifugation, and in concentrations of detergent and Mg(2+) in the media. Both the thylakoid and the fragments preserved carbonic anhydrase (CA) activities. Using nondenaturing electrophoresis followed by detection of CA activity in the gel stained with bromo thymol blue, one low molecular mass carrier of CA activity was found in the PSI-membranes, and two carriers, a low molecular mass one and a high molecular mass one, were found in the PSII-membranes. The proteins in the PSII-membranes differed in their sensitivity to acetazolamide (AA), a specific CA inhibitor. AA at 5 × 10(-7) M inhibited the CA activity of the high molecular mass protein but stimulated the activity of the low molecular mass carrier in the PSII-membranes. At the same concentration, AA moderately inhibited, by 30%, the CA activity of PSI-membranes. CA activity of the PSII-membranes was almost completely suppressed by the lipophilic CA inhibitor, ethoxyzolamide at 10(-9) M, whereas CA activity of the PSI-membranes was inhibited by this inhibitor even at 5 × 10(-7) M just the same as for AA. The observed distribution of CA activity in the thylakoid membranes from A. thaliana was close to the one found in the membranes of pea, evidencing the general pattern of CA activity in the thylakoid membranes of C3-plants.
Carbonic anhydrase activities of pea thylakoids as well as thylakoid fragments enriched either in Photosystem 1 (PS1-membranes) or Photosystem 2 (PS2-membranes) were studied. The activity of PS1-membranes if calculated on chlorophyll basis was much higher than the activity of PS2-membranes. Acetazolamide, a non-permeable inhibitor of carbonic anhydrases, increased carbonic anhydrase activity of PS2-membranes at concentrations lower than 10(-6) M and suppressed this activity only at higher concentrations. A lipophilic inhibitor of carbonic anhydrases, ethoxyzolamide, effectively suppressed the carbonic anhydrase activity of PS2-membranes (I50 = 10(-9) M). Carbonic anhydrase activity of PS1-membranes was suppressed alike by both inhibitors (I50 = 10(-6) M). In the course of the electrophoresis of PS2-membranes treated with n-dodecyl-beta-maltoside "high-molecular-mass" carbonic anhydrase activity was revealed in the region corresponding to core-complex of this photosystem. Besides, carbonic anhydrase activity in the region of low-molecular-mass proteins was discovered in the course of such an electrophoresis of both PS2- and PS1-membranes. These low-molecular-mass carbonic anhydrases eluted from corresponding gels differed in sensitivity to specific carbonic anhydrase inhibitors just the same as PS1-membranes versus PS2-membranes. The results are considered as evidence for the presence in the thylakoid membranes of three carriers of carbonic anhydrase activity.
Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.