The use of thermoresponsive surfaces as platforms for cell culture and cell regeneration has been explored over the last couple of decades. Poly-N-isopropylacrylamide (pNIPAm) is a well characterized thermoresponsive polymer which has an aqueous lower critical solution temperature (LCST) in a physiologically useful range, which allows it to reversibly attract (T < 32 °C) and repel water (T > 32 °C). It is this phenomenon that is exploited in temperature-controlled cell harvesting. pNIPAm coatings are generally poorly cell compatible and a number of complex or expensive techniques have been developed in order to overcome this issue. This study seeks to design a simple one-step system whereby commercially sourced pNIPAm is used to achieve similar results. Films were deposited using the operationally simple but rheologically complex spin coating technique. Reversible temperature modulated cell adhesion was achieved using a variety of different cell lines. This system offers a simplistic and cheaper alternative to methods used elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.