Caspase-3 is a cysteine protease located in both the cytoplasm and mitochondrial intermembrane space that is a central effector of many apoptotic pathways. In resting cells, a subset of caspase-3 zymogens is S-nitrosylated at the active site cysteine, inhibiting enzyme activity. During Fas-induced apoptosis, caspases are denitrosylated, allowing the catalytic site to function. In the current studies, we sought to identify the subpopulation of caspases that is regulated by S-nitrosylation. We report that the majority of mitochondrial, but not cytoplasmic, caspase-3 zymogens contain this inhibitory modification. In addition, the majority of mitochondrial caspase-9 is S-nitrosylated. These studies suggest that S-nitrosylation plays an important role in regulating mitochondrial caspase function and that the S-nitrosylation state of a given protein depends on its subcellular localization.
Adriamycin (ADR) is a commonly used chemotherapeutic agent that also produces significant tissue damage. Mutations to mitochondrial DNA (mtDNA) and reductions in mtDNA copy number have been identified as contributors to ADR-induced injury. ADR nephropathy only occurs among specific mouse inbred strains, and this selective susceptibility to kidney injury maps as a recessive trait to chromosome 16A1-B1. Here, we found that sensitivity to ADR nephropathy in mice was produced by a mutation in the Prkdc gene, which encodes a critical nuclear DNA double-stranded break repair protein. This finding was confirmed in mice with independent Prkdc mutations. Overexpression of Prkdc in cultured mouse podocytes significantly improved cell survival after ADR treatment. While Prkdc protein was not detected in mitochondria, mice with Prkdc mutations showed marked mtDNA depletion in renal tissue upon ADR treatment. To determine whether Prkdc participates in mtDNA regulation, we tested its genetic interaction with Mpv17, which encodes a mitochondrial protein mutated in human mtDNA depletion syndromes (MDDSs). While single mutant mice were asymptomatic, Prkdc/Mpv17 double-mutant mice developed mtDNA depletion and recapitulated many MDDS and ADR injury phenotypes. These findings implicate mtDNA damage in the development of ADR toxicity and identify Prkdc as a MDDS modifier gene and a component of the mitochondrial genome maintenance pathway.
BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine–threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.)
Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes – differentiated epithelial cells critical for filtration – are thought to lack significant capacity for regeneration. Here, we show that podocytes rapidly lose differentiation markers and enter cell cycle in adult mice in which the telomerase protein component TERT is conditionally expressed. Transgenic TERT expression induces marked upregulation of Wnt signaling and disrupts glomerular structure resulting in a collapsing glomerulopathy resembling those in humans, including HIV-associated nephropathy (HIVAN). Human and mouse HIVAN kidneys show increased levels of TERT and activation of Wnt signaling, indicating that these are general features of collapsing glomerulopathies. Either silencing transgenic TERT expression or inhibition of Wnt signaling through systemic expression of the Wnt-inhibitor Dkk1 in TERT transgenic mice results in marked normalization of podocytes, including rapid cell cycle exit, re-expression of differentiation markers and improved filtration barrier function. These data reveal an unexpected property of podocytes to reversibly enter cell cycle, suggest that podocyte renewal may contribute to glomerular homeostasis and implicate the telomerase and Wnt/β-catenin pathways in podocyte proliferation and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.