The aim of this review is to demonstrate the effects of cardiovascular interval training (IT) on healthy elderly subjects. We used the recommendations of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The following variables were observed: resting heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MBP), heart rate variability (HRV), baroreflex activity (BA), and maximal oxygen uptake (VO 2max). Studies were searched for in the MedLine, PubMed, and Sport Discus databases considering publications between 1990 and 2019. To find the studies, the keywords used were "Interval and Elderly Training" or "Interval Training and Baroreflex Sensing" or "Interval Training and Aging and Pressure Arterial and Blood Pressure Training" or "Interval Training and Variation in Aging and Heart Rate" or "Interval Training and Sensitivity to the Elderly and Baroreflex" or "Interval Training and Variability in the Elderly and Heart Rate." The systematic search identified 1,140 hits. The analysis of the study was performed through a critical review of the content. One thousand one hundred forty articles were identified. Of these, 1,108 articles were excluded by checking the articles and abstracts. Finally, 32 studies were selected for full reading while 26 studies were eliminated because they did not contain a methodology according to the purpose of this review. Thus, six studies were included for the final analysis. The PEDro score was used for analyzing the study quality and found 4,8 ± 1,3 points (range: 3-6). Positive results were found with the different IT protocols in the observed variables. Results show that IT protocols can be an efficient method for functional improvement of cardiovascular and cardiorespiratory variables in the healthy elderly, especially HR, SBP, DBP, MAP, HRV, BA, and VO 2max. However, this method can be included in the prescription of aerobic training for the elderly to obtain conditional improvements in the cardiovascular system, thus being an important clinical intervention for the public.
Background: Interval training is a method with high acceptance in prescription to increase health and can be an essential intervener in improving cardiovascular function. Objective: This study aimed to verify the effects of eight weeks of interval training with different intensities on hemodynamic and autonomic function, which were assessed through resting heart rate, blood pressure, dual product, and heart rate variability. Methods: The sample consisted of 24 older men (age: 68.8 ± 6.8 years, body mass: 74.4 ± 18.1 kg, height: 1.70 ± 0.8 m; BMI: 25.1 ± 2, 2) who were physically active. Participants were randomized into 3 experimental groups: training group A (TGA, n = 8), training group B (TGB, n = 8) and control group (CG, n = 8). For trained groups, interventions were developed twice a week for eight weeks, with an interval of 48 hours between the sessions. The evaluations were carried out at the pre (baseline) and after the eighth week of intervention. The control group did not perform any intervention. The variables were analyzed for 10 minutes with subjects at rest in the sitting position before and after the intervention. Statistics with a significance level of p <0.05 were applied. Results: After the intervention, no statistically significant results were found in the variables assessed (p> 0.05). Conclusion: The intervention was not sufficient to promote statistical differences in hemodynamic and autonomic variables.
Introduction: In addition to being prevalent in the elderly population, sarcopenia has become a precursor to functional decline in this population. Alternative means for screening is necessary. Objectives: The aim of this study was to evaluate the sensitivity and specificity of the SARC-F sarcopenia screening instrument. Methods: The sample consisted of 153 elderly of both sexes. Screening of sarcopenia was evaluated by the SARC-F questionnaire. Strength, function and muscle mass were evaluated through the protocol adapted from the European Working Group on Sarcopenia in Older People (EWGSOP). The sensitivity and specificity of the questionnaire were evaluated using the ROC curve. Results: 13.72% of the elderly evaluated were classified as sarcopenic. The parameters most related to sarcopenia were older and lack of physical exercise. Sex was not a parameter that had a relationship in classification. Sensitivity was 60.0% and specificity of 80.92% with an area on the curve of 0.70. Conclusion: Our data supports the use of SARC-F as a screening tool that can be used in community and hospital environments as a quick screening tool.Keywords: muscle strength, aged, sarcopenia.
Introduction: Dancers use to do stretching exercises to increase flexibility in the preparation and completion of training and activities. The purpose of the present study was to compare two methods of passive stretching of hip flexion in classical dancer children. Methods: Twenty-one female’s children were recruited for the study, and each participant visited the laboratory on two occasions during three-days at least twenty-four hours between visits. A randomized within-subject design used to investigate the effects of three conditions: control (CG), static stretching (SS), and proprioceptive neuromuscular facilitation (PNF) applied to the posterior thigh, unilaterally, on passive hip flexion (HF) with 60-seconds. Results: There were no statistical differences for CG (F = 0.716; p = 0.552), SS (F = 0.536; p = 0.662) and PNF (F = 1.713; p = 0.191). Conclusion: The results found in the present study indicate that different stretching methods can promote increases in HF and PROM without difference between methods.Keywords: flexibility, dancing, youngster.
Background: Sprint interventions can be an excellent alternative for promoting positive adaptations to health and performance. Objectives: To verify the responses of different intervals between sprints in blood pressure, heart rate variability, lactate, and performance responses in physically active men. Methods: Ten male runners participated in the present study, trained in street running with at least one year of experience and a maximum of 3 years, with training frequency of at least two times and at the most four times weekly sessions, all participants without any kind of restrictions that could hinder the interventions—performing three sprint sessions (10 x 30m all out). Participants visited the laboratory on four occasions for ten consecutive days, with an interval of 48 hours between each visit. The first visit was intended to familiarize the participants with all experimental procedures. The remaining three visits were used to carry out the experimental protocols. At each visit, resting values of blood pressure (BP), heart rate variability (HRV), and lactate variables were collected. After rest collections, each participant completed the following experimental conditions: a) 10 sprint series (all-out) of 30 meters with 20 seconds of recovery (S 20), b) 10 sprint series (all-out) of 30 meters with 30 seconds of recovery (S 30) and c) 10 sprint series (all-out) of 30 meters with 40 seconds of recovery (S 40). After each protocol, the lactate values were collected 2 minutes and 30 seconds after the end of the sprints; BP was collected 60 minutes after the intervention (Post-10, Post-20, Post-30, Post-40, and Post- 50). After the blood pressure (BP) data was determined, the mean arterial pressure (MBP) was calculated using the formula MBP = SBP + (DBP X 2) / 3. The HRV was collected between 50 and 60 minutes after the end of the sprint session. Results: The study observed significant differences in the lactate variable for the comparison in the post and pre moments for all experimental conditions (S 20, S 30, and S 40) (p<0.001). Besides, significant differences were observed in effort perception for S 20 and S 30 from the sixth sprint (p<0.05). At S 40, significant discrepancies in effort perception started from the fifth sprint (p <0.05). No other significant differences were observed for BP (systolic, diastolic and mean) for all post-pre periods. Still in BP, in a post (intra) analysis, the conditions S 20 and S 40 demonstrated greater capacity for recovery of BP, suggesting a possible greater parasympathetic capacity. For HRV and sprint performance, no difference was found (p <0.05). Conclusion: The present study demonstrated that different recovery intervals did not reflect significant differences in hemodynamic, autonomic, lactate responses, and active individuals' performance submitted to sprint sessions. This study applied a protocol (10 x 30 m all out) with different recovery times (20, 30, and 40 seconds), and which, given this experiment, can serve as a training strategy (for health or performance) at different levels of physical conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.