An increasing global population and a sharply upward trajectory of per capita energy consumption continue to drive the demand for fossil fuels, which remain integral to energy grids and the global transportation infrastructure. The oil and gas industry is increasingly reliant on unconventional deposits such as heavy crude oil and bitumen for reasons of accessibility, scale, and geopolitics. Unconventional deposits such as the Canadian Oil Sands in Northern Alberta contain more than one-third of the world’s viscous oil reserves and are vital linchpins to meet the energy needs of rapidly industrializing populations. Heavy oil is typically recovered from subsurface deposits using thermal recovery approaches such as steam-assisted gravity drainage (SAGD). In this perspective article, we discuss several aspects of materials science challenges in the utilization of heavy crude oil with an emphasis on the needs of the Canadian Oil Sands. In particular, we discuss surface modification and materials’ design approaches essential to operations under extreme environments of high temperatures and pressures and the presence of corrosive species. The demanding conditions for materials and surfaces are directly traceable to the high viscosity, low surface tension, and substantial sulfur content of heavy crude oil, which necessitates extensive energy-intensive thermal processes, warrants dilution/emulsification to ease the flow of rheologically challenging fluids, and engenders the need to protect corrodible components. Geopolitical reasons have further led to a considerable geographic separation between extraction sites and advanced refineries capable of processing heavy oils to a diverse slate of products, thus necessitating a massive midstream infrastructure for transportation of these rheologically challenging fluids. Innovations in fluid handling, bitumen processing, and midstream transportation are critical to the economic viability of heavy oil. Here, we discuss foundational principles, recent technological advancements, and unmet needs emphasizing candidate solutions for thermal insulation, membrane-assisted separations, corrosion protection, and midstream bitumen transportation. This perspective seeks to highlight illustrative materials’ technology developments spanning the range from nanocomposite coatings and cement sheaths for thermal insulation to the utilization of orthogonal wettability to engender separation of water–oil emulsions stabilized by endogenous surfactants extracted during SAGD, size-exclusion membranes for fractionation of bitumen, omniphobic coatings for drag reduction in pipelines and to ease oil handling in containers, solid prills obtained from partial bitumen solidification to enable solid-state transport with reduced risk of damage from spills, and nanocomposite coatings incorporating multiple modes of corrosion inhibition. Future outlooks for onsite partial upgradation are also described, which could potentially bypass the use of refineries for some fractions, enable access to a broader cross-se...
Linear aminoalkanoic acids (AAAs) and mercaptoalkanoic acids (MAAs) were characterized as bifunctional ligands to tether CdSe QDs to nanocrystalline TiO2 thin films and to mediate excited-state electron transfer (ET) from the QDs to TiO2 nanoparticles. The adsorption of 12-aminododecanoic acid (ADA) and 12-mercaptododecanoic acid (ADA) to TiO2 followed the Langmuir adsorption isotherm. Surface adduct formation constants (Kad) were ∼10(4) M(-1); saturation amounts of the ligands per projected surface area of TiO2 (Γ0) were ∼10(-7) mol cm(-2). Both Kad and Γ0 differed by 20% or less for the two linkers. CdSe QDs adhered to ADA- and MDA-functionalized TiO2 films; data were well modeled by the Langmuir adsorption isotherm and Langmuir kinetics. For ADA- and MDA-mediated assembly values of Kad were (1.8 ± 0.4) × 10(6) and (2.4 ± 0.4) × 10(6) M(-1), values of Γ0 were (1.6 ± 0.3) × 10(-9) and (1.2 ± 0.1) × 10(-9) mol cm(-2), and rate constants were (14 ± 5) and (60 ± 20) M(-1) s(-1), respectively. Thus, the thermodynamics and kinetics of linker-assisted assembly were slightly more favorable for MDA than for ADA. Steady-state and time-resolved emission spectroscopy revealed that electrons were transferred from both band-edge and surface states of CdSe QDs to TiO2 with rate constants (ket) of ∼10(7) s(-1). ET was approximately twice as fast through thiol-bearing linker 4-mercaptobutyric acid (MBA) as through amine-bearing linker 4-aminobutyric acid (ABA). Photoexcited QDs transferred holes to adsorbed MBA. In contrast, ABA did not scavenge photogenerated holes from CdSe QDs, which maximized the separation of charges following ET. Additionally, ABA shifted electron-trapping surface states to higher energies, minimizing the loss of potential energy of electrons prior to ET. These trade-offs involving the kinetics and thermodynamics of linker-assisted assembly; the driving force, rate constant, and efficiency of ET; and the extent of photoinduced charge separation can inform the selection bifunctional ligands to tether QDs to surfaces.
Dual purposed ZnO tetrapods promote photopolymerization of methacrylates and provide surface roughness for superhydrophobicity. Large area photochemical fabrication of hybrid coating is demonstrated for liquid/liquid separation applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.