Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss associated with recent anthropogenic fragmentation of the D. elongatus studied range.
The South American species, Dichroplus elongatus, is polymorphic for B chromosomes and supernumerary segments in chromosome pairs M6 (SS6), S9 (SS9) and S10 (SS10). Both forms of supernumerary heterochromatin shape chiasma frequency and distribution and B chromosomes also affect male fertility. Here, we analysed the effects of these polymorphisms on morphometric traits (total, 3rd femur, 3rd tibia, thorax and tegmen lengths) and several adult fitness components, including male and female mating success, and female reproductive potential. B chromosomes tend to decrease, and SS6 segments to increase the body size of carriers. The analysis of reproductive potential suggested that B chromosome carrying females have higher numbers of embryos per clutch and ovarioles per ovary. The uni‐ and multivariate analysis of mating success revealed that sexual selection favours larger individuals of both sexes and males with standard karyotype. B chromosomes may have accumulation mechanisms, which involve preferential transmission of B chromosomes to germ cells or functional gametes. The maintenance of Bs might be explained by interactions among accumulation mechanisms and trade‐offs between detrimental and favourable effects on different fitness components.
Wing dimorphism occurs widely in insects and involves discontinuous variation in a wide variety of traits involved in fight and reproduction. In the current study, we analyzed the spatial pattern of wing dimorphism and intraspecific morphometric variation in nine natural populations of the grasshopper Dichroplus vittatus (Bruner; Orthoptera: Acrididae) in Argentina. Considerable body size differences among populations, between sexes and wing morphs were detected. As a general trend, females were larger than males and macropterous individuals showed increased thorax length over brachypterous which can be explained by the morphological requirements for the development of flight muscles in the thoracic cavity favoring dispersal. Moreover, when comparing wing morphs, a higher phenotypic variability was detected in macropterous females. The frequency of macropterous individuals showed negative correlation with longitude and positive with precipitations, indicating that the macropterous morph is more frequent in the humid eastern part of the studied area. Our results provide valuable about spatial variation of fully winged morph and revealed geographic areas in which the species would experience greater dispersal capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.