SUMMARY The purpose of this in situ study was to evaluate the influence of staining solutions (coffee and cola) on the color change, microhardness, roughness, and micromorphology of the enamel surface during at-home and in-office dental bleaching. One hundred and thirty-five enamel bovine blocks were prepared to perform the evaluations. Fifteen volunteers used an intraoral appliance with nine enamel blocks for 15 days. The enamel blocks were randomly assigned among the different groups according to the three treatments: in-office bleaching with high hydrogen peroxide concentration (Opalescence Boost PF 40%, Ultradent) for 40 minutes in three sessions (first, eighth, and 15th days of treatment), at-home bleaching with low carbamide peroxide concentration (Opalescence PF 10%, Ultradent) for 60 minutes daily for 15 days, and a control group (no bleaching agent applied). The enamel blocks were immersed daily in different staining solutions (coffee or cola) for 30 minutes for 15 days or were not submitted to staining (control) to obtain a factorial scheme (3×3) of the dental bleaching treatment and staining solution (n=15). The microhardness analyses (Knoop), roughness evaluations (Ra), surface micromorphological observations, and color measurements (using the CIELAB system and the VITA Classical scale) were made before and after the bleaching treatments to assess immersion in staining solutions. Mixed model tests showed that there was a decrease in enamel microhardness after exposure to cola compared with coffee and the control group (p<0.0001) for both bleaching techniques. Roughness was higher for the cola groups (p<0.0001), and there was no significant difference between the coffee and the control groups. Generalized linear models showed that when no staining solution was applied, lighter color scores were found for the VITA Classical scale (p<0.0001). Without the staining solutions, there was an increase in luminosity (ΔL) (p=0.0444) for in-office bleaching. Lower values of Δa (p=0.0010) were observed when the staining solutions were not used. The Δb (p=0.3929) did not vary significantly between the bleaching agents, but when cola was applied, the values were significantly higher than for the control (p=0.0293). Higher values of ΔE (p=0.0089) were observed for in-office bleaching without staining solutions, while lower values of ΔE were observed for the in-office associated with coffee immersion. Regardless of whether being submitted to bleaching, the enamel stained with cola showed a decrease in microhardness, an increase in roughness, and changes in the micromorphology. The efficacy of the bleaching agents was greater when no staining solution (cola or coffee) was used, and in-office bleaching showed greater color change than the at-home bleaching technique.
The purpose of this study was to evaluate bleaching methods containing hydrogen peroxide (HP) or carbamide peroxide (CP), dispensed in customized or prefilled trays, in terms of color change, tooth sensitivity, gingival irritation, acceptance, and comfort. Seventy-five volunteers were randomly selected and distributed according to the whitening agent (n=25): 10% HP dispensed in prefilled trays (Opalescence Go 10%) and 9.5% HP (Pola Day) and 10% CP both delivered in customized trays (Opalescence PF 10%). HP was applied for 30 min/d for 14 days (d), and CP for 8 h/d for 14 days. Evaluations were performed at baseline and at 7 days and 14 days of treatment. Color change was measured with Commission internationale de l'éclairage color coordinates (L*, a*, b*), Vita Classical, and 3D Master scales. A visual analog scale was used to assess tooth sensitivity, acceptance of the method and degree of comfort of the tray. Gingival irritation was evaluated as present or absent and localized or generalized. Regarding gingival irritation, tray acceptance, and tooth sensitivity, no differences were observed among the groups at any time (p>0.05). As for degree of comfort, 10% HP showed lower scores (comfortable) than 10% CP, with significant differences (p<0.05) from the other groups (comfortable to very comfortable). In terms of ΔL, Δa, and ΔE, no difference was observed among the groups or between the time periods (p>0.05). The Δb average was higher at 14 days (p<0.05), and there was no difference among the groups (p>0.05). Localized gingival irritation was observed in both tray methods. Mild tooth sensitivity was observed with time, regardless of the bleaching agent concentration or the application time. Color change was similar for all the groups at 7 days and 14 days, but there was a greater reduction in the yellow hue at 14 days. All the bleaching methods were highly accepted and effective in promoting whitening. Although prefilled trays are generally comfortable, they proved less comfortable than customized trays.
The aim of this study was to evaluate soluble and insoluble fluoride concentrations in commercial varnishes, and their remineralization effect on artificial caries enamel lesions using surface and cross-sectional microhardness evaluations. Forty bovine enamel blocks were separated into four groups (n=10): control (no treatment), Enamelast (Ultradent Products), Duraphat (Colgate-Palmolive) and Clinpro White Varnish (3M ESPE). Surface enamel microhardness evaluations were obtained, artificial enamel caries lesions were developed by dynamic pH-cycling, and the varnishes were then applied every 6 days, after which the enamel blocks were submitted to dynamic remineralization by pH cycles. After removal of the varnishes, the enamel surfaces were reassessed for microhardness. The blocks were sectioned longitudinally, and cross-sectional microhardness measurements were performed at different surface depths (up to 300 μm depth). Polarized light microscopy images (PLMI) were made to analyze subsurface caries lesions. The fluoride concentration in whole (soluble and insoluble fluoride) and centrifuged (soluble fluoride) varnishes was determined using an extraction method with acetone. The data were analyzed to evaluate the surface microhardness, making adjustments for generalized linear models. There was a significant decrease in enamel surface microhardness after performing all the treatments (p<0.0001). Enamelast and Duraphat showed significantly higher enamel microhardness values than the control and the Clinpro groups (p = 0.0002). Microhardness loss percentage was significantly lower for Enamelast (p = 0.071; One-way ANOVA). PLMI showed that subsurface caries lesions were not remineralized with the varnish treatments. No significant differences in the in-depth microhardness levels (p = 0.7536; ANOVA) were observed among the treatments. Enamelast presented higher soluble and insoluble fluoride concentrations than the other varnishes (p < 0.0001; Kruskal-Wallis and Dunn tests). Enamelast and Duraphat varnishes promoted enamel surface remineralization, but no varnish remineralized the subsurface lesion body. Although insoluble and soluble fluoride concentration values did not correspond to those declared by the manufacturer, Enamelast presented higher fluoride concentration than the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.