MENX is a recessive multiple endocrine neoplasia-like syndrome in the rat. The tumor spectrum in MENX overlaps those of human multiple endocrine neoplasia (MEN) types 1 and 2. We mapped the MenX locus to the distal part of rat chromosome 4, excluding the homologs of the genes responsible for the MEN syndromes ( RET and MEN1 ) and syndromes with an endocrine tumor component ( VHL and NF1 ). We report the fine mapping of the disease locus and the identification of a homozygous frameshift mutation in Cdkn1b , encoding the cyclin-dependent kinase inhibitor p27 Kip1 . As a consequence of the mutation, MENX-affected rats show dramatic reduction in p27 Kip1 protein. We have identified a germ-line nonsense mutation in the human CDKN1B gene in a MEN1 mutation-negative patient presenting with pituitary and parathyroid tumors. Expanded pedigree analysis shows that the mutation is associated with the development of an MEN1-like phenotype in multiple generations. Our findings demonstrate that germ-line mutations in p27 Kip1 can predispose to the development of multiple endocrine tumors in both rats and humans.
Papillary thyroid carcinoma (PTC) is clinically heterogeneous. Apart from an association with ionizing radiation, the etiology and molecular biology of PTC is poorly understood. We used oligobased DNA arrays to study the expression profiles of eight matched pairs of normal thyroid and PTC tissues. Additional PTC tumors and other tissues were studied by reverse transcriptase-PCR and immunohistochemistry. The PTCs showed concordant expression of many genes and distinct clustered profiles. Genes with increased expression in PTC included many encoding adhesion and extracellular matrix proteins. Expression was increased in 8͞8 tumors for 24 genes and in 7͞8 tumors for 22 genes. Among these genes were several previously known to be overexpressed in PTC, such as MET, LGALS3, KRT19, DPP4, MDK, TIMP1, and FN1. The numerous additional genes include CITED1, CHI3L1, ODZ1, N33, SFTPB, and SCEL. Reverse transcriptase-PCR showed high expression of CITED1, CHI3L1, ODZ1, and SCEL in 6͞6 additional PTCs. Immunohistochemical analysis detected CITED1 and SFTPB in 49͞52 and 39͞52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue. Genes underexpressed in PTC included tumor suppressors, thyroid function-related proteins, and fatty acid binding proteins. Expression was decreased in 7͞8 tumors for eight genes and decreased in 6͞8 tumors for 19 genes. We conclude that, despite its clinical heterogeneity, PTC is characterized by consistent and specific molecular changes. These findings reveal clues to the molecular pathways involved in PTC and may provide biomarkers for clinical use.
The diagnosis of thyroid tumors is critical for clinical management; however, tumors with follicular architecture often present problems. We evaluated the diagnostic use of the protein expression of four genes that were found to be upregulated in papillary thyroid carcinoma compared to normal thyroid (LGALS3, FN1, CITED1 and KRT19), and of the mesothelial cell surface protein recognized by monoclonal antibody HBME1 in thyroid tumors. Tissues from 85 carcinomas (67 papillary, six follicular, eight Hü rthle cell and four anaplastic) and 21 adenomas were evaluated by immunohistochemistry for the expression of these gene protein products, for example, galectin-3 (GAL3), fibronectin-1 (FN1), CITED1, cytokeratin-19 (CK19) and HBME1. Non-neoplastic thyroids (29 adenomatous and 14 thyrotoxic hyperplasia, and 59 normal) were also studied. The expression of all five proteins was significantly associated with malignancy, and highly specific (Z90%) for carcinoma compared to adenoma. GAL3, FN1 and/or HBME1 expression was seen in 100% of carcinomas (85/85) and in 24% of adenomas (5/21). Coexpression of multiple proteins was seen in 95% of carcinomas and only 5% of adenomas (Po0.0001). Coexpression of FN1 and GAL3 (FN1 þ GAL3 þ , 70/85) or FN1 and HBME1 (FN1 þ HBME1 þ , 53/85) was restricted to carcinomas, while their concurrent absence (FN1ÀGAL3À or FN1ÀHBME1À, 18/21 adenoma) was highly specific (96%) for benign lesions. Among non-neoplastic thyroids, adenomatous hyperplasia frequently expressed GAL3 (n ¼ 16), CK19 (n ¼ 9) and CITED1 (n ¼ 7), but the expression was predominantly focal in contrast to the diffuse expression in carcinomas. An immunohistochemical panel consisting of GAL3, FN1 and HBME1 may be useful in the diagnosis of follicular cell-derived thyroid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.