Background and Aims
The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine‐rich repeat‐containing G protein‐coupled receptor 5 (LGR5)–positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited.
Approach and Results
Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40‐fold cell expansion after 2 weeks, compared with 6‐fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver‐like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up‐regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes.
Conclusions
We established a highly efficient method for culturing large numbers of LGR5‐positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.
The combination of methotrexate with
epidermal growth factor receptor
(EGFR) recombinant antibody, cetuximab, is currently being investigated
in treatment of head and neck carcinoma. As methotrexate is cleared
by renal excretion, we studied the effect of cetuximab on renal methotrexate
handling. We used human conditionally immortalized proximal tubule
epithelial cells overexpressing either organic anion transporter 1
or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux
pumps breast cancer resistance protein (BCRP), multidrug resistance
protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling
upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based
pathway analysis were used to predict EGFR-mediated transporter regulation.
Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol
bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated
fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein
(GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in
transepithelial transport, respectively. Cetuximab reversed the EGF-increased
expression of OAT1 and BCRP as well as their membrane expressions
and transport activities, while MRP4 and P-gp were increased. Pathway
analysis predicted cetuximab-induced modulation of PKC and PI3K pathways
downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased
expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT
inhibition reduced all transporters. Exposure to methotrexate for
24 h led to a decreased viability, an effect that was reversed by
cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while
upregulating P-gp and MRP4 through an EGFR-mediated regulation of
PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates
methotrexate-induced cytotoxicity, which opens possibilities for further
research into nephroprotective comedication therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.