The increasing availability of (digital) cultural heritage artefacts offers great potential for increased access to art content, but also necessitates tools to help users deal with such abundance of information. User-adaptive art recommender systems aim to present their users with art content tailored to their interests. These systems try to adapt to the user based on feedback from the user on which artworks he or she finds interesting. Users need to be able to depend on the system to competently adapt to their feedback and find the artworks that are most interesting to them. This paper investigates the influence of transparency on user trust in and acceptance of content-based recommender systems. A between-subject experiment (N = 60) evaluated interaction with three versions of a content-based art recommender in the cultural heritage domain. This recommender system provides users with artworks that are of interest to them, based on their ratings of other artworks. Version 1 was not transparent, version 2 explained to the user why a recommendation had been made and version 3 showed a rating of how certain the system was that a recommendation would be of interest to the user. Results show that explaining to the user why a recommendation was made increased acceptance of the recommendations. Trust in the system itself was not improved by transparency. Showing how certain the system was of a recommendation did not influence trust and acceptance. A number of guidelines for design of recommender systems in the cultural heritage domain have been derived from the study's results.
Abstract. In this paper we present an approach for personalized access to museum collections. We use a RDF/OWL specification of the Rijksmuseum Amsterdam collections as a driver for an interactive dialog. The user gives his/her judgment on the artefacts, indicating likes or dislikes. The elicited user model is further used for generating recommendations of artefacts and topics. In this way we support exploration and discovery of information in museum collections. A user study provided insights in characteristics of our target user group, and showed how novice and expert users employ their background knowledge and implicit interest in order to elicit their art preference in the museum collections.
Natalia Stash received her PhD from the Eindhoven University of Technology (TU/e), The Netherlands. The title of her thesis is "Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System". She currently participates in the CHIP project (Cultural Heritage Information Personalization) located at the Rijksmuseum in Amsterdam. Her research interests include adaptive web-based systems, semantic web technologies, learning styles, e-culture applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.