Artemisia annua is established as an efficient crop for the production of the anti-malarial compound artemisinin, a sesquiterpene lactone synthesized and stored in Glandular Secretory Trichomes (GSTs) located on the leaves and inflorescences. Amorpha-4,11-diene synthase (AMS) catalyzes the conversion of farnesyl pyrophosphate (FPP) to amorpha-4,11-diene and diphosphate, which is the first committed step in the synthesis of artemisinin. FPP is the precursor for sesquiterpene and sterol biosynthesis in the plant. This work aimed to investigate the effect of blocking the synthesis of artemisinin in the GSTs of a high artemisinin yielding line, Artemis, by down regulating AMS. We determined that there are up to 12 AMS gene copies in Artemis, all expressed in GSTs. We used sequence homology to design an RNAi construct under the control of a GST specific promoter that was predicted to be effective against all 12 of these genes. Stable transformation of Artemis with this construct resulted in over 95% reduction in the content of artemisinin and related products, and a significant increase in the FPP pool. The Artemis AMS silenced lines showed no morphological alterations, and metabolomic and gene expression analysis did not detect any changes in the levels of other major sesquiterpene compounds or sesquiterpene synthase genes in leaf material. FPP also acts as a precursor for squalene and sterol biosynthesis but levels of these compounds were also not altered in the AMS silenced lines. Four unknown oxygenated sesquiterpenes were produced in these lines, but at extremely low levels compared to Artemis non-transformed controls (NTC). This study finds that engineering A. annua GSTs in an Artemis background results in endogenous terpenes related to artemisinin being depleted with the precursor FPP actually accumulating rather than being utilized by other endogenous enzymes. The challenge now is to establish if this precursor pool can act as substrate for production of alternative sesquiterpenes in A. annua.
Summary Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very‐long‐chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn‐2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.