In Alzheimer's disease (AD), cognitive decline is linked to cholinergic dysfunctions in the basal forebrain (BF), although the earliest neuronal damage is described in the entorhinal cortex (EC). In rats, selective cholinergic BF lesions or fiber-sparing EC lesions may induce memory deficits, but most often of weak magnitude. This study investigated, in adult rats, the effects on activity and memory of both lesions, alone or in combination, using 192 IgG-saporin (OX7-saporin as a control) and L-N-methyl-D-aspartate to destroy BF and EC neurons, respectively. Rats were tested for locomotor activity in their home cage and for working-and/or reference-memory in various tasks (water maze, Hebb-Williams maze, radial maze). Only rats with combined lesions showed diurnal and nocturnal hyperactivity. EC lesions impaired working memory and induced anterograde memory deficits in almost all tasks. Lesions of BF cholinergic neurons induced more limited deficits: reference memory was impaired in the probe trial of the water-maze task and in the radial maze. When both lesions were combined, performance never improved in the water maze and the number of errors in the Hebb-Williams and the radial mazes was always larger than in any other group. These results (i) indicate synergistic implications of BF and EC in memory function, (ii) suggest that combined BF cholinergic and fiber-sparing EC lesions may model aspects of anterograde memory deficits and restlessness as seen in AD, (iii) challenge the cholinergic hypothesis of cognitive dysfunctions in AD, and (iv) contribute to open theoretical views on AD-related memory dysfunctions going beyond the latter hypothesis.
Evidence from the effect of aspiration lesions of the entorhinal cortex (EC) has shown that this region is involved in conditioned odor-aversion (COA) learning--that is, the avoidance of an odorized tasteless solution the ingestion of which precedes toxicosis--by rendering COA tolerant to long odor-toxicosis delay. The present study examined whether neurotoxic lesions restricted to the lateral or medial parts of the EC, in comparison with large aspiration lesions, were sufficient to produce this effect. Male Long-Evans rats received odor-intoxication pairing with either a short (5-min) or long (120-min) delay between the presentation of the odor and toxicosis. All groups, including sham-lesioned controls, showed COA at the 5-min odor-toxicosis delay interval, but only rats with lateral EC damage displayed COA at the longer delay. These data show that the lateral EC is part of the substrate involved in the control of the olfactory memory trace during COA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.