Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver’s participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
In secondary lymphoid organs, pathogen‐derived and endogenous danger molecules are recognized by pattern recognition receptors, leading to adaptive proinflammatory immune responses. This conceptual rule does not apply directly to the liver, as hepatic immune cells tolerate gut‐derived bacterial molecules from the flora. Therefore, the recognition of danger and proinflammatory stimuli differs between the periphery and the liver. However, the tolerant nature of the liver must be overcome in the case of infections or cancer, for example. The central paradigm is the basis for danger recognition and the balance between inflammation and tolerance in the liver. Here, we observed functional integration, with activated peripheral T lymphocytes playing a role in the induction of a proinflammatory environment in the liver in the presence of Trypanosoma cruzi antigens. When only parasite extract was orally administered, it led to the up‐regulation of hepatic tolerance markers, but oral treatment plus adoptively transferred activated splenic T lymphocytes led to a proinflammatory response. Moreover, treated/recipient mice showed increased levels of TNF, IFN‐γ, IL‐6, and CCL2 in the liver and increased numbers of effector and/or effector memory T lymphocytes and F4/80+ cells. There was a reduction in FoxP3+ Treg cells, NKT cells, and γδ T lymphocytes with increased liver damage in the presence of activated peripheral T cells. Our results show that the induction of a proinflammatory liver response against T. cruzi danger molecules is at least partially dependent on cooperation with activated peripheral T cells.
Multiple cell populations, cellular biochemical pathways, and the autonomic nervous system contribute to maintaining the immunological tolerance in the liver. This tolerance is coherent because the organ is exposed to high levels of bacterial pathogen-associated molecular pattern (PAMP) molecules from the intestinal microbiota, such as lipopolysaccharide endotoxin (LPS). In the case of Trypanosoma cruzi infection, although there is a dramatic acute immune response in the liver, we observed intrahepatic cell populations combining pro- and anti-inflammatory markers. There was loss of fully mature Kupffer cells and an increase in other myeloid cells, which are likely to include monocytes. Among dendritic cells (DCs), the cDC1 population expanded relative to the others, and these cells lost both some macrophage markers (F4/80) and immunosuppressive cytokines (IL-10, TGF-β1). In parallel, a massive T cell response occured with loss of naïve cells and increase in several post-activation subsets. However, these activated T cells expressed both markers programmed cell death protein (PD-1) and cytokines consistent with immunosuppressive function (IL-10, TGF-β1). NK and NK-T cells broadly followed the pattern of T cell activation, while TCR-γδ cells appeared to be bystanders. While no data were obtained concerning IL-2, several cell populations also synthesized IFN-γ and TNF-α, which has been linked to host defense but also to tissue injury. It therefore appears that T. cruzi exerts control over liver immunity, causing T cell activation via cDC1 but subverting multiple populations of T cells into immunosuppressive pathways. In this way, T. cruzi engages a mechanism of hepatic T cell tolerance that is familiar from liver allograft tolerance, in which activation and proliferation are followed by T cell inactivation.
The unusual phenotype of CD3+ T lymphocyte expressing B220, a marker originally attributed to B lymphocytes, was first observed in the liver of Fas/Fas-L-deficient mice as a marker of apoptotic T lymphocytes. However, other CD3+B220+ T lymphocyte populations were later described in the periphery as functional cytotoxic or regulatory cells, for example. Then, in this work, we studied whether hepatic CD3+B220+ T lymphocytes could play a role in experimental Trypanosoma cruzi infection. In control and infected mice, we observed two subpopulations that could be discerned based on CD117 expression, which were conventional apoptotic CD3+B220+(CD117−) and thymus-independent CD3+B220+CD117+ T lymphocytes. Regardless of CD117 expression, most B220+ T lymphocytes were 7AAD+, confirming this molecule as a marker of dying T cells. However, after infection, we found that around 15% of the CD3+B220+CD117+ hepatic population became B220 and 7AAD negative, turned into CD90.2+, and upregulated the expression of CD44, CD49d, and CD11a, a phenotype consistent with activated T lymphocytes. Moreover, we observed that the hepatic CD3+B220+CD117+ population was rescued from death by previously activated peripheral T lymphocytes. Our results extend the comprehension of the hepatic CD3+B220+ T lymphocyte subpopulations and illustrate the complex interactions that occur in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.