More than 200 scientific publications and Internet sources dealing with trade in palm products in north-western South America are reviewed. We focus on value chains, trade volumes, prices,
Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat (Avena sativa L. cv. Supernova-INIA) -wheat (Triticum aestivum L. cv. Pandora-INIA) crop rotation was established under the following conservation systems: no tillage (Nt), Nt + contour plowing (Nt+Cp), Nt + barrier hedge (Nt+Bh), and Nt + subsoiling (Nt+Sb), compared to conventional tillage (Ct) to evaluate their influence on soil water content (SWC) in the profile (10 to 110 cm depth), the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p < 0.05) interaction with tillage system and depth; Nt+Sb showed lower SWC between 10 to 30 cm, but higher and similar to the rest between 50 to 110 cm except for Ct. Although, SWC was higher in conservation tillage systems, the high values on soil compaction affected yield. No tillage + subsoiling reduced soil compaction and had a significant increment of grain yield (similar to Ct in seasons 2008 and 2009). These findings show us that the choice of conservation tillage in compacted soils of the Mediterranean region needs to improve soil structure to obtain higher yields and increment SWC.
Soil organic matter (OM) content is a quality indicator, but is an inadequate indicator in the short-term because these changes take place slowly, so dissolved organic components have emerged as an alternative. In volcanic soil subjected to different crop rotations with distinct land use intensity, dissolved organic C and N (DOC and DON) were determined as well as their relationship with total C and N contents in the soil, considering the effects of crop rotation, fertilization level, and soil depth. In humid samples of Humic Haploxerands collected at four depths up to 40 cm, DOC and DON contents were determined by extraction with K2SO4 and filtered. Results indicated interaction between the studied factors, DOC fluctuated between 67.8 and 151.7 mg kg -1 with the highest value with intensive management in rotations that included corn (Zea mays L.) associated with a higher fertilization. DON fluctuated between 4.62 and 37.4 mg kg -1 with the highest value in non-intensive rotations that included prairie. With respect to total C, DOC reached 0.40% with intensive management and the lowest value in non-intensive management. DON showed values between 0.13 and 0.68% with respect to total N with intensive and non-intensive management, respectively. Tillage management affected DOC and DON contents depending on the fertilization level and the depth at which it was determined, and were also affected by the crop included in the rotation, thus making these parameters good indicators to evaluate the effects of agronomic management in the short-term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.