First principles electronic structure simulations are used to study the atomistic detail of the interaction between organic surfactant molecules and the surfaces of CdSe semiconductor nanoparticles. These calculations provide insights into the relaxed atomic geometry of organics bound to semiconductor surfaces at the nanoscale as well as the electronic charge transfer between surface atoms and the organics. We calculate the binding energy of phosphine oxide, phosphonic and carboxylic acids and amine ligands to a range of CdSe nanoparticle facets. The dominant binding interaction is between oxygen atoms in the ligands and cadmium atoms on the nanoparticle surfaces. The most strongly bound ligands are phosphonic acid molecules, which bind preferentially to the facets forming the sides of CdSe nanorods. The calculated relative binding strengths of ligands to different facets support the hypothesis that these binding energies control the relative growth rates of different facets, and therefore the resulting geometry of the nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.